• Title/Summary/Keyword: Strength Optimization

Search Result 840, Processing Time 0.025 seconds

Optimum Design for the Frame of the Shuttle Car for LMTT to transfer a Container (컨테이너 이송을 위한 LMTT용 셔틀 카의 프레임 치수최적설계)

  • Han, Dong-Seop;Han, Geun-Jo;Lee, Kwon-Hee;Shim, Jae-Joon;Lee, Seong-Wook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.429-432
    • /
    • 2005
  • LMTT(Linear Motor based Transfer Technology) is a new type of transfer system used in the maritime container terminal for the port automation, and largely consists of a controller, shuttle car, and rail. The shuttle car is divided into the frame part, the driving part, and wheels. In order to design this system, various researched on each part of it must be conducted. In this study, we dealt with the optimum design for the frame part of the shuttle car designed from previous studies on the strength of the frame with respect to the number of cross beams to minimize the weight of the shuttle car and to satisfy design criteria of cargo-handling systems in container terminal. For the optimization of the frame, thicknesses of each beam were adopted as design variables, the weight of the frame as objective function, and stress and deflection per unit length as constraint conditions.

  • PDF

Thermal Residual Stresses in the Frequency Selective Surface Embedded Composite Structures and Design of Frequency Selective Surface (주파수 선택적 투과막이 결합된 복합재료의 잔류응력평가 및 선택적 투과막 설계)

  • Kim, Ka-Yeon;Chun, Heoung-Jae;Kang, Kyung-Tak;Lee, Kyung-Won;Hong, Ic-Pyo;Lee, Myoung-Keon
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, Particle Swarm Optimization(PSO) is applied to the design of the Frequency Selective Surface(FSS) and residual stresses of hybrid radome is predicted. An equivalent circuit model with Square Loops arrays was derived and then PSO was applied for acquiring the optimized geometrical parameters with proper resonant frequency. Residual stresses occur in the FSS embedded composite structures after cocuring and have a great influence on the strength of the FSS embedded composite structures. They also effect transmission quality because of delamination. Therefore, the thermal residual stresses of FSS embedded composite structures were analyzed using finite element analysis with considering the effects of FSS pattern, and composite stacking sequence.

Optimization of Processing of Surimi Gel from Unmarketable Cultured Bastard Halibut Paralichthys olivaceus using RSM (RSM을 이용한 비규격 제주산 양식 넙치(Paralichthys olivaceus)로부터 연제품의 가공 조건 최적화)

  • Shin, Jun-Ho;Park, Kwon-Hyun;Lee, Ji-Sun;Kim, Hyung-Jun;Lee, Dong-Ho;Heu, Min-Soo;Jeon, You-Jin;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.5
    • /
    • pp.435-442
    • /
    • 2011
  • This study was conducted to optimize the processing of high quality surimi gel from unmarketable cultured bastard halibut Paralichthys olivaceus. According to endogenous enzyme activity and processing optimization, high quality surimi gel from unmarketable cultured bastard halibut was prepared by mixing 3.0% (w/w) salt, 2.4% (w/w) starch, 5.0% (w/w) egg white and 4.8% (w/w) ice water in a Stephan mixer, set at $5^{\circ}C$ for 24 h, followed by boiling for 30 min, and finally cooling for 30 min. The strength of the surimi gel from unmarketable cultured bastard halibut prepared by the above processing method was $1,257\;g{\times}cm$, which was 33% higher than that of a commercial surimi gel from Alaska pollock, grade SA.

An Introduction to the Optimization Method for Weld Seam Positions using SA (SA를 이용한 선박의 용접선 배치 최적화 방법)

  • Kim, Yountae;Han, Myeong-Ki;Beak, Gyeong-Dong;Hwang, Joon-Seok;Lee, Dae-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.540-543
    • /
    • 2013
  • 선박은 판과 보강재를 효율적으로 조립한 매우 복잡한 구조물이고, 이동하는 구조물로써는 최대규모의 구조물이다. 특히, 선체 구조의 설계란 "예상되는 모든 하중에 충분히 견딜 수 있는 강도(strength)와 강성(stiffness)을 가진 부재의 크기를 결정하고 적절히 배치하는 과정이다." 라고 말할 수 있다. 선체 구조의 설계는 부재의 배치가 얼마나 적절하게 잘되어 있는가에 달려 있다고 하여도 과언이 아닐 정도로 매우 중요하다. 주요 구조 부재의 부재 배치에 대한 기본적인 개념은 판 부재의 용접선(seam line), 종, 횡늑골의 간격, 종거어더 등을 예로 들 수 있으며, 부재의 배치는 최적 설계 및 공작상의 관점으로부터 선정되어야 하며, 또한 선체 전체의 구조적인 연결이 불연속이 되지 않도록 하여야 한다. 특히, 판 부재의 용접선은 여러 가지 표준치수로 생산되는 판 들 중, 판의 기준 폭이 얼마인 것을 사용하는 것이 공작상 또는 배치상 가장 편리한 가를 생각하여야 한다. 이것은 선박의 크기에 따라 다르겠지만, 조선소 크레인의 용량 및 가공상, 강도상의 문제를 고려하여 가능한 한용접선의 수를 줄이는 것이 바람직하다. 용접선을 줄이기 위해서는 판 부재의 폭을 넓게 하면 되나, 철강회사에서 표준으로 생산 판매하는 주판의 폭보다 넓은 판을 주문 구입 한다는 것은 곧 생산비용의 증가로 이어지는 것으로 이는 주판 구입 경비 측면에서는 바람직하지 않다. 따라 서, 주판 구입경비의 최소화를 유도하면서도 주판 폭의 적정 및 용접선 개수 최소화를 유지할 수 있도록 설계하는 것은 중요하지만, 용접선 배치의 문제는 다양한 입력 변수를 고려해야 하는 복잡한 문제이기 때문에 그간 최적화 관점에서 접근하지 못하고 시니어급 엔지니어가 가진 경험과 조선소의 지침서에 기재된 절차에 따라 대략적인 해를 결정하여 왔다. 본 연구는 이러한 복잡한 문제를 최적화 방법인 당금질(Simulated Annealing) 방법을 이용하여 해결한 결과를 소개하며, 그 결과와 효용성에 대해 논하도록 하겠다.

  • PDF

Exercise Optimization Algorithm based on Context Aware Model for Ubiquitous Healthcare (유비쿼터스 헬스케어를 위한 문맥 인지 모델 기반 운동 최적화 알고리즘)

  • Lim, Jung-Eun;Choi, O-Hoon;Na, Hong-Seok;Baik, Doo-Kwon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.6
    • /
    • pp.378-387
    • /
    • 2007
  • To enhancing the exercise effect, exercise management systems are introduced and generally used. They create the proper exercise program through exercise prescription after determining the personal body status. When the exercise programs are created, they will consider $2weeks{\sim}3months$ period. And, existing exercise programs cannot respect with personal exercise habits or exercise period which are changing variedly. If exercise period is long, it can be caused inappropriate exercise about user current status. To solve these problems in legacy systems, this paper proposes a Context Aware Exercise Model (CAEM) to provide the exercise program considering the user context. Also, we implemented that as Intelligent Fitness Guide (IFG) System. The IFG system is selectively received necessary measurement values as input values according to user's context. If exercise kinds, frequency and strength of user are changing, that system creates the exercise program through exercise optimization algorithm and exercise knowledge base. As IFG is providing the exercise program in a real time, it can be managed the effective exercise according to user context.

Multi-Objective Optimization of Steel Structures Using Fuzzy Theory (퍼지 이론을 이용한 강구조물의 다목적 최적설계)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.153-163
    • /
    • 2004
  • The main objective of this study is to develop a multi-objective fuzzy optimum design program of steel structures and to verify that the multi-objective fuzzy optimum design is more reasonable than the single objective optimum design in real structural design. In the optimization formulation, the objective functions are both total weight and deflection. The design constraints are derived from the ultimate strength of service ability requirement of AISC-LRFD specification. The structural analysis was performed by the finite element method and also considered geometric non-linearity. The different importance of optimum criteria were reflected with two weighting methods ; membership weighting method and objective weighting method. Thus, designers could choose rational optimum solution of structures with application of two weighting methods.

Methodology of Springback Prediction of Automotive Parts Applied 3rd Generation AHSS Using the Progressive Meta Model (프로그레시브 메타모델을 이용한 3세대 초고장력강판 적용 차체 부품의 스프링백 예측 방법론)

  • Yoon, J.I.;Oh, K.H.;Lee, S.R.;Yoo, J.H.;Kim, T.J.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.241-250
    • /
    • 2020
  • In this study, the methodology of the springback prediction of automotive parts applied 3rd generation AHSS was investigated using the response surface model analysis based on a regression model, and the meta model analysis based on a Kriging model. To design the learning data set for constructing the springback prediction models, and the experimental design was conducted at three levels for each processing variable using the definitive screening designs method. The hat-shaped member, which is the basic shape of the member parts, was selected and the springback values were measured for each processing type and processing variable using the finite element analysis. When the nonlinearity of the variables is small during the hat-shaped member forming, the response surface model and the meta model can provide the same processing parameter. However, the accuracy of the springback prediction of the meta model is better than the response surface model. Even in the case of the simple shape parts forming, the springback prediction accuracy of the meta model is better than that of the response surface model, when more variables are considered and the nonlinearity effect of the variables is large. The efficient global optimization algorithm-based Kriging is appropriate in resolving the high computational complexity optimization problems such as developing automotive parts.

Quality Characteristic and Optimization of Iced Cookie with Addition of Jinuni bean(Rhynchosia volubilis) (쥐눈이콩(鼠目太) 첨가 냉동쿠키의 품질특성 및 최적화)

  • Ko, Young-Joo;Joo, Na-Mi
    • Korean journal of food and cookery science
    • /
    • v.21 no.4 s.88
    • /
    • pp.514-527
    • /
    • 2005
  • The purposes of this study were firstly to optimize the recipe for iced cookies by cooking with five different ingredient levels of $Jinuni\;bean(X_1),\;butter(X_2)\;&\;sugar(X_3)$ and secondly to analyze the chemical and sensory test results by using RSM(Response Surface Methodology). As a result of this test, water activity decreased with increasing contents of butter or sugar, while hydrophilic browning decreased independently with increasing sugar content. There was a positive correlation(p<.001) between specific gravity and hardness, although the result was not uniform due to the interaction of each factor. There was a negative correlation(p<.001) between the spread ratio and gravity or hardness, and it tended to increase with increasing each content. Color value L and color value a had positive correlation (p<.001) and the value tended to decrease with increasing the quantity of Jinuni bean. Generally, the strength of the cookies showed a saddle point at the peak of the 3d graph. As a result of sensory evaluation, the color was sensitive to the contents of sugar and Jinuni bean, the texture was sensitive to the contents of butter and sugar, and the taste and overall quality were sensitive to all three factors. Color had a positive correlation(p<.05) with the taste, texture and overall quality. There were high positive correlations(p<.001) between the taste, texture and overall quality. The preference data showed an up-swollen, parabolic shape in the center of the 34 graph, which enabled the optimum value to be determined and the optimum mixture ratio which fulfilled all sensory items was Jinuni bean 93g, butter 188.5g and sugar 155g, indicating a substitution of flour by $44\%$.

Development of Optimization Technique of Warm Shrink Fitting Process for Automobile Transmission Part(Shaft/Gear) (자동차 변속기 단품(축/기어)용 온간압입공정 최적화 기법 개발)

  • Kim Ho-Yoon;Bae Won-Byong;Kim Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.37-43
    • /
    • 2006
  • Fitting process carried out in automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that heats gear to a suitable range under the tempering temperature and squeezes it toward the outer diameter of shaft. Its stress depends on the yield strength of gear. Press fitting is a method that generally squeezes gear toward that of shaft at room temperature by press. Another method heats warmly gear and safely squeezes it toward that of shaft. Warm shrink fitting process for automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by this process produced dimensional change in both outer diameter and profile of the gear. So that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of warm shrink fitting process, in which design parameters are involved; contact pressure according to fitting interference between outer diameter of shaft and inner diameter of gear, fitting temperature, and profile tolerance of gear. In this study, an closed form equation to predict contact pressure and fitting load was proposed in order to develop optimization technique of warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, that is, thermal-structural coupled field analysis. Actual loads measured in the field have a good agreement with the results obtained by theoretical and finite element analysis and also the expanded amounts of the outer diameters of the gears have a good agreement with results.

DESIGN OF A LOAD FOLLOWING CONTROLLER FOR APR+ NUCLEAR PLANTS

  • Lee, Sim-Won;Kim, Jae-Hwan;Na, Man-Gyun;Kim, Dong-Su;Yu, Keuk-Jong;Kim, Han-Gon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.369-378
    • /
    • 2012
  • A load-following operation in APR+ nuclear plants is necessary to reduce the need to adjust the boric acid concentration and to efficiently control the control rods for flexible operation. In particular, a disproportion in the axial flux distribution, which is normally caused by a load-following operation in a reactor core, causes xenon oscillation because the absorption cross-section of xenon is extremely large and its effects in a reactor are delayed by the iodine precursor. A model predictive control (MPC) method was used to design an automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control for APR+ nuclear plants. Some tracking controllers employ the current tracking command only. On the other hand, the MPC can achieve better tracking performance because it considers future commands in addition to the current tracking command. The basic concept of the MPC is to solve an optimization problem for generating finite future control inputs at the current time and to implement as the current control input only the first control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The support vector regression (SVR) model that is used widely for function approximation problems is used to predict the future outputs based on previous inputs and outputs. In addition, a genetic algorithm is employed to minimize the objective function of a MPC control algorithm with multiple constraints. The power level and ASI are controlled by regulating the control banks and part-strength control banks together with an automatic adjustment of the boric acid concentration. The 3-dimensional MASTER code, which models APR+ nuclear plants, is interfaced to the proposed controller to confirm the performance of the controlling reactor power level and ASI. Numerical simulations showed that the proposed controller exhibits very fast tracking responses.