• 제목/요약/키워드: Strength Index

검색결과 1,552건 처리시간 0.028초

응력특이성계수에 의한 이종 접합재료의 강도평가 (Strength Evaluation of Bonded Dissimilar Materials by Using Stress Singularity Factor)

  • 정남용;오봉택
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2087-2096
    • /
    • 1996
  • Recentrly advantages in composite and light weight material techniques have led to the increased use of bonded dissimilar materials such as ceramics/metal bonded joints, IC package, brazing, coating and soldering in the various industries. It is required to analyze the evaluation method of fracture strength and design methodology of bonded joints in dissimilar materials. Stress singularity according to changes of scarf angles for bonded scarf joints in dissimilar materials was investigated by the boundary element method and static experiments. In this paper, effect of the stress singularity factors at the interface edges of scarf joints on various dissmilar materials combinations were investigated by analysis of its stress and stress singularity index using 2-dimensional elastic program of boundary element method. And the variations of stress singularity index by changes for Young's modulus ratios of materials and scarf angles were investigated. Also, it is found that stress singularities at bonded interface edges are disappeared for certain combination of scarf angle in a pair of bonded dissimilar materials. As the results, it is proposed that the strength evaluation by using stress singularity factors, $\Gamma$, considering stress singularity at the interface edges of bonded dissimilar materials, is very useful.

Investigation of the model scale and particle size effects on the point load index and tensile strength of concrete using particle flow code

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Hedayat, Ahmadreza;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.445-452
    • /
    • 2018
  • In this paper the effects of particle size and model scale of concrete have been investigated on point load index, tensile strength, and the failure processes using a PFC2D numerical modeling study. Circular and semi-circular specimens of concrete were numerically modeled using the same particle size, 0.27 mm, but with different model diameters of 75 mm, 54 mm, 25 mm, and 12.5 mm. In addition, circular and semi-circular models with the diameter of 27 mm and particle sizes of 0.27 mm, 0.47 mm, 0.67 mm, 0.87 mm, 1.07 mm, and 1.27 mm were simulated to determine whether they can match the experimental observations from point load and Brazilian tests. The numerical modeling results show that the failure patterns are influenced by the model scale and particle size, as expected. Both Is(50) and Brazilian tensile strength values increased as the model diameter and particle sizes increased. The ratio of Brazilian tensile strength to Is(50) showed a reduction as the particle size increased but did not change with the increase in the model scale.

한국에 분포하는 화강암 풍화토의 토질공학적 특성 (Geotechnical Chsracterization of Weathered Granite Soils in Korea)

  • 이수곤
    • 한국지반공학회지:지반
    • /
    • 제9권3호
    • /
    • pp.5-22
    • /
    • 1993
  • 우리나라의 화강암 풍화토(CW와 RC풍화등급)의 불교란시료에 대한 일련의 토질물성 및 역 학적 특성실험이 수행되었다. 화강암 풍화토는 크게 CW 및 RS 풍화등급으로 나뉘어지며, 풍화가 많이 진행됨에 따라서 토질 물성이 매우 예민하게 변화하고, 일축압축강도 및 전단강도지수도 급격히 감소할 뿐만 아니라, 또한 변형특성은 풍화가 많이되고 침수됨에 따라서 화강암풍화토가 점차로 ductile하고 plastic하게 변해가는 특성이 있다. 또한 화강암 풍화토는 침수가 됨에 따라서 특이한 성질이 있는 것으로 관찰되었다: (1) 전단강 도(특히 점착력) 및 일축압축강도가 급격히 감소할 뿐만 아니라, (2) 물과의 반응시에 화강암 풍 화토의 입자가 쉽게 약해져서 더욱 작은 입자크기로 분해된다.

  • PDF

저온 환경에서 콘크리트 포장의 강도발현 촉진을 위한 양생방법 연구 (A Study on Curing Methods for Concrete Pavement on Early Strength Development in Cool Weather Condition)

  • 류성우;김진환;홍승호;박제진
    • 한국도로학회논문집
    • /
    • 제19권3호
    • /
    • pp.11-18
    • /
    • 2017
  • PURPOSES : This study investigates the effect on concrete pavement accordance with the curing methods in cool weather and supports the best method in the field. METHODS : Two field tests evaluated the curing methods of concrete pavement in cool weather. Firstly, five curing methods were tested, including normal curing compound, black curing compound, bubble sheet, curing mat, and curing mat covered with vinyl. Concrete maturity was compared from temperature data. Secondly, normal curing compound and curing mat with vinyl, which showed the best performance, were compared in terms of maturity and join condition index. RESULTS:From the field tests, it is an evident that curing mat with vinyl accelerated the concrete strength. Therefore, it is possible to conduct saw-cut works in cool weather, which minimizes damage on concrete at joint. CONCLUSIONS : For concrete pavement in cool weather, using curing mat with vinyl as the curing method could overcome the strength delay. Therefore, strength and durability problems on concrete at joint due to cool weather would be fewer in the future.

내구성을 고려한 하부 컨트롤 암의 구조설계 (Structural Design of a Front Lower Control Arm Considering Durability)

  • 박한석;김종규;서선민;이권희;박영철
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.69-75
    • /
    • 2009
  • Recently developed automotive components are getting lighter providing a higher fuel efficiency and performance. Following the current trend, this study proposes a structural optimization method for the lower control arm installed at the front side of a Vehicle. Lightweight design of lower control arm can be achieved through design and material technology. In this research, the shape of lower control arm was determined by applying the optimization technology and aluminum was selected as a steel-substitute material. Strength performance is the most important design requirement in the structural design of a control arm. This study considers the static strength in the optimization process. For the optimum design, the durability analysis is performed to predict its fatigue life. In this study, the kriging interpolation method is adopted to obtain the minimum weight satisfying the strength constraint. Optimum designs are obtained by the in-house program, EXCEL-Kriging. Also, based on the optimum model obtained for the static strength, the optimization of Index of Fatigue Durability is carried out to get th optimum fatigue performance.

  • PDF

Interaction of industrial effluents and bentonite: a comparative study of their physico-chemical and geotechnical characteristics

  • Murugaiyan, V.;Saravanane, R.;Sundararajan, T.
    • Geomechanics and Engineering
    • /
    • 제1권4호
    • /
    • pp.291-306
    • /
    • 2009
  • One-dimensional soil-column studies were carried out to understand the interaction of three industrial effluents namely amino acid ('highly acidic'), surfactant ('highly organic') and pharmaceutical ('organic and toxic') on the physicochemical behavior, index properties and shear strength of bentonite due to artificial contamination extending to nearly 300 days. Changes in inorganic and organic pollutants present in the effluents due to the interaction of the above effluents and soil were assessed to understand the physico-chemical behaviour. Batch and continuous modes of operation, 8 hrs and 16 hrs Hydraulic Retention Time [HRT] and 25%, 50% concentrations of effluents, were the parameters considered. Amino acid, surfactant and pharmaceutical effluents have shown a high variation in pH (7 to 8) after artificial contamination on bentonite that is their original characteristics of the above effluents have been completely reversed. Further, it is found that the shear strength of bentonite has reduced by about 20%, and with respect to liquid limit and plastic limit shows an increasing trend with time within the period of contamination.

Residual ultimate strength of a very large crude carrier considering probabilistic damage extents

  • Choung, Joonmo;Nam, Ji-Myung;Tayyar, Gokhan Tansel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.14-26
    • /
    • 2014
  • This paper provides the prediction of ultimate longitudinal strengths of the hull girders of a very large crude carrier considering probabilistic damage extent due to collision and grounding accidents based on IMO Guidelines (2003). The probabilistic density functions of damage extent are expressed as a function of non-dimensional damage variables. The accumulated probabilistic levels of 10%, 30%, 50%, and 70% are taken into account for the estimation of damage extent. The ultimate strengths have been calculated using the in-house software called Ultimate Moment Analysis of Damaged Ships which is based on the progressive collapse method, with a new convergence criterion of force vector equilibrium. Damage indices are provided for several probable heeling angles from $0^{\circ}$ (sagging) to $180^{\circ}$ (hogging) due to collision- and grounding-induced structural failures and consequent flooding of compartments. This paper proves from the residual strength analyses that the second moment of area of a damage section can be a reliable index for the estimation of the residual ultimate strength. A simple polynomial formula is also proposed based on minimum residual ultimate strengths.

카본섬유 복합재 라미네이트를 적용한 레저용 소형 전기차량의 후륜 업라이트의 구조강도 해석 (Strength Analysis of Rear Upright Laminated with Carbon Fiber Composite for Leisure Purposed Small Electric Car)

  • 장운근
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.273-280
    • /
    • 2019
  • Carbon fiber composite laminate has been widely used in the area of sports applications such as race car, golf club, fishing rods, yacht. In this study, carbon fiber composite laminate was used in the rear upright of leisure purposed small size single-seat electric race car to reduce its unsprung mass of suspension system. The focus of this research is to investigate in finding optimal stacking lay-up of rear upright laminated with carbon fiber composite in the early design phase. Forces transferred from circuit road to rear upright were estimated through MBD(Multi-Body Dynamics)model of the rear suspension geometry. To evaluate the strength of the rear upright laminated with carbon fiber composite which generally behaves in an anisotropic or orthotropic manner, FEA(Finite Element Analysis) model suitable for composite materials was built followed by its strength was evaluated depending on different stacking lay-up. The result showed that Symmetric stacking lay-up [$45^{\circ}/-45^{\circ}/90^{\circ}/0^{\circ}$]s for frontal area and symmetric stacking lay-up with 1mm aluminum core [$45^{\circ}/-45^{\circ}/90^{\circ}/Core$]s for rear area were most suitable of 16 lay-up cases from the side of both strength based on Tasi-wu failure index and weight.

노인 혈액투석 환자를 위한 근력강화 운동 프로그램의 효과 (Effects of a Muscle Strength Reinforcement Exercise Program for Older Adult Patients on Hemodialysis)

  • 이제나
    • 노인간호학회지
    • /
    • 제20권3호
    • /
    • pp.204-216
    • /
    • 2018
  • Purpose: The purpose of this study was to examine effects of a muscle strength reinforcement exercise program (MSREP) for older adult patients with hemodialysis (OAPHD) which was designed to improve health status and quality of life of these older adult patients. Methods: Participants were 40 patients with OAPHD: 20 in the experimental group and 20 in the control group. MSREP was conducted with the experimental group for 12 weeks at H geriatric hospital. An assessment was done to determine effects on physical performance, inflammation index, fatigue, muscle strength and quality of life. Short physical performance battery, C-Reactive Protein (CRP), visual analog scale for fatigue, object lifting' proposed by the Life Options Rehabilitation Advisory Council, sit-to-stand test, and quality of life index were used to gather data. Results: Between the 2 groups there was no significant difference in scores for physical performance, fatigue or quality of life. However, the 2 groups showed significant difference in CRP values and muscle power scores on post-test. Conclusion: Findings provide evidence for the potential utility of education for older adult patients with hemodialysis. Also, this program could allow these patients to increase muscle strength, and contribute to achieving better health conditions in OAPHD care.

Predicting the shear strength parameters of rock: A comprehensive intelligent approach

  • Fattahi, Hadi;Hasanipanah, Mahdi
    • Geomechanics and Engineering
    • /
    • 제27권5호
    • /
    • pp.511-525
    • /
    • 2021
  • In the design of underground excavation, the shear strength (SS) is a key characteristic. It describes the way the rock material resists the shear stress-induced deformations. In general, the measurement of the parameters related to rock shear strength is done through laboratory experiments, which are costly, damaging, and time-consuming. Add to this the difficulty of preparing core samples of acceptable quality, particularly in case of highly weathered and fractured rock. This study applies rock index test to the indirect measurement of the SS parameters of shale. For this aim, two efficient artificial intelligence methods, namely (1) adaptive neuro-fuzzy inference system (ANFIS) implemented by subtractive clustering method (SCM) and (2) support vector regression (SVR) optimized by Harmony Search (HS) algorithm, are proposed. Note that, it is the first work that predicts the SS parameters of shale through ANFIS-SCM and SVR-HS hybrid models. In modeling processes of ANFIS-SCM and SVR-HS, the results obtained from the rock index tests were set as inputs, while the SS parameters were set as outputs. By reviewing the obtained results, it was found that both ANFIS-SCM and SVR-HS models can provide acceptable predictions for interlocking and friction angle parameters, however, ANFIS-SCM showed a better generalization capability.