• Title/Summary/Keyword: Strength Improvement

Search Result 2,914, Processing Time 0.034 seconds

The Effects of an Aquatic Exercise Program with Obesity Management Education on Physical Function of Obese Women in Community (비만관리 교육을 포함한 수중운동 프로그램이 지역사회 비만여성의 신체기능에 미치는 효과)

  • Kim, Jong Im;Park, Ju Ah;Kim, Ji Young;Lee, Li Na;Jeon, Hye Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.267-274
    • /
    • 2019
  • The purpose of this study is to investigate the effect of a practiced aquatic exercise program on the body function of obese women in the community, with knowledge of obesity preceded by obesity management education. The subjects were 20 obese women aged 51 to 79 who participated in the program for 8 weeks among the participants of health program in S healthcare center in D city. The aquatic exercise program, which includes obesity management training, consists of a total of 110 minutes, including twice a week, 20 minutes of obesity management training, and 60 minutes of aquatic exercise program. Obesity management education focuses on physical activity practice and dietary training. The results of this study showed that the aquatic exercise program including the 8 - week obesity management training decreased abdominal circumference, body weight and body mass index (p <.001, p <.001, p <.001),increased grip strength(P <.05), which is an effective program for reducing obesity and improving muscle power. In the follow-up study, it is necessary to increase the number of subjects and to develop the experimental design study with the control group and the participatory obesity management underwater exercise program that the participant directly participates and leads. It also suggests that additional strategies for continuous lifestyle improvement are needed.

Effects of Task Training for Cognitive Activation of Stroke Patients on Upper Function and Activities of Daily Living (뇌졸중 환자의 인지활성화를 위한 과제 훈련이 상지기능 및 일상생활동작에 미치는 영향)

  • Kim, Yu-Jeong;Kang, Bo-Ra;Ahn, Si-Nae
    • Journal of Korean Society of Neurocognitive Rehabilitation
    • /
    • v.10 no.2
    • /
    • pp.27-34
    • /
    • 2018
  • The purpose of this study is to investigate the effect of task training for cognitive activation of upper extremity on upper limb function and activities of daily living and to suggest intervention in rehabilitation treatment. From January to February of 2018, nine stroke patients were arbitrated 30 minutes a day, five days a week, for four weeks. For the experimental group, the therapist has induced the group using the linguistic guidance to patients, so they utilize the cognition strategy. The control group conducted active exercises in a range of motion using the instruments and passive exercises in a range of motion to reduce the stiffness of joints and upper limbs. As muscle strengthening exercises, the patients were assigned to work on the biceps muscle of arm, triceps muscle of arm, and deltoid according to the individual patient's muscular strength level. For the experimental group, the MBI was improved by ten points at maximum, and K-AMPS motor skills showed the improvements of 1.0 logit at maximum, and processing skills showed improvements of 0.6 logits at maximum. In MFT, the maximum improvement was by two points. For the control group, MBI was improved by five points at maximum, and 0.2 maximum improvements were shown in K-AMPS' motor skills and 0.3 maximum improvements in processing skills. MFT showed no change. The conclusion is that the challenges to enable training for stroke patients give a positive impact on upper limb function and activities of daily living.

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

Behavioral Characteristics and Safety Management Plan for Fill Dam During Water Level Fluctuation Using Numerical Analysis (수치해석을 이용한 수위변동시 필댐의 거동특성 및 안전관리방안)

  • Jung, Heedon;Kim, Yongseong;Lee, Moojae;Lee, Seungjoo;Tamang, Bibek;Heo, Joon;Ahn, Sungsoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • In this study, the behavioral characteristics of the fill dam were analyzed during water level fluctuations through a numerical analysis model, and the reservoir safety management plan was prepared. The variation in plastic deviatoric strain, horizontal displacement, stress path, pore water pressure, etc., due to elevation of water level in the upper and lower sides of shell and core were analyzed using numerical analysis software, viz. GTS NX and LIQCA. The analysis results manifest that as the water level in the dam body increases rapidly, the pore water pressure and displacement also increase quickly. It was found that the elevation of the water level causes an increase in pore water pressure in the dam body as well as an increase in the saturation of the dam body and decreased effective stress. It is considered that this type of dam behavior can be the cause of the reduction of strength and stiffness of the dam. Also, it is assumed that the accumulated plastic deviatoric strain due to the deformation of the dam body caused by water infiltration causes an increase in displacement. Based on these experimental results and the results of analyses of the existing reservoir safety diagnosis techniques, an improvement plan for dam safety diagnosis and evaluation criteria was proposed, and these results can be used as primary data while revising dam safety diagnosis guidelines.

Low-Temperature Characteristics of Type 4 Composite Pressure Vessel Liner according to Rotational Molding Temperature (타입 4 복합재 압력용기 라이너의 회전 성형 온도에 따른 저온 특성)

  • Jung, Hong-Ro;Park, Ye-Rim;Yang, Dong-Hoon;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.147-152
    • /
    • 2022
  • Low-temperature characteristics according to internal temperature conditions during rotational molding of Type 4 pressure vessel liners were studied in this paper. Since rotational molding has a sensitive effect on the formability of the liner depending on the temperature conditions, the temperature conditions for the polyamide used should be accurately set. The structural changes of polyamide as the liner material was analyzed the surface by atomic force microscope (AFM), and the crystallinity measured with a differential scanning calorimeter (DSC) is used to evaluate the change of the mechanical strength value at low temperature. In addition, the formability of the liner was confirmed by observation of the yellow index inside the liner. As a result, as the melting range of the internal temperature becomes wider, the yellow index shows a lower value, and the elongation and impact characteristics at low temperatures are improved. It was also confirmed that the structure of the polyamide was uniform and the crystallinity was high by AFM and DSC. These experimental results contribute to the improvement of characteristics at low temperatures due to changes in temperature conditions during rotational molding.

A Study on Quality Improvement and Verification of Recycled Coarse Aggregate for Concrete Using an Impact Crusher with Radial Rotation (방사형 회전이 추가된 임팩트 크러셔를 이용한 콘크리트용 순환굵은골재 품질향상 및 검증 연구)

  • Jeon, Duk-Woo;Kim, Yong-Seong;Jeon, Chan-Soo;Choi, Won-Young;Cho, Won-Ig
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.133-142
    • /
    • 2022
  • The purpose of this study is to develop an impact crusher with a radial rotating plate installed at the bottom, which is a shock absorber that can produce high-quality recycled coarse aggregate for concrete and to verify the effect of improving the quality performance of recycled coarse aggregate and its applicability through concrete tests. As a result, it showed improved quality in all items such as absolute dry density, absorption rate, abrasion resistance, Particle shape judgment rate, amount lost in the 0.08 mm sieve passing test, alkali aggregate reaction, clay mass, stability, and impurity content, and it was found to meet the criteria of recycled aggregate quality standards. In addition, the air volume and slump of concrete to which recycled coarse aggregate is applied meet all domestic standards. According to the test results of the compressive strength characteristics by age of concrete according to the mixing ratio of the recycled coarse aggregate, it was confirmed that the mixing ratio of the recycled coarse aggregate was applicable up to 60 %.

Performance Evaluation of Fiber-Reinforced Concrete Compression Members Transversely Constrained by BFRP (BFRP로 횡구속된 섬유 보강 콘크리트 압축부재의 성능평가)

  • Lee, Gyeong-Bok;Lee, Sang-Moon;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.607-616
    • /
    • 2022
  • Corrosion and degradation of reinforced structures due to abnormal climates and natural disasters further accelerate the aging of structures. Coping with the decrease in structure performance, many old structures are being repaired and reinforced with low-weight and high-strength materials such as glass fiber composite material (GFRP). To further contribute, this paper focus on a more economical and eco-friendly material, basalt fiber composite (BFRP), which provide a more effective lateral constraint effect for seismic reinforcement. The main variables considered in this study are the curing temperature during the manufacturing of BFRP and the material characteristics of the target concrete member. The lateral constraint reinforcement effect was investigated through the evaluation of the performance of normal concrete and those with improved durability through fiber reinforcement. The reinforcement effect was 3.15 times for normal concrete and 3.72 times for fiber reinforced concrete, and the difference in reinforcement effect due to the improvement of the durability characteristics of the compression member was not significant. Lastly, the performance of the BFRP was compared with the results of the GFRP reinforcement from the previous study. The effect of the BFRP reinforcement was 1.18 times better than that of the GFRP reinforcement.

Characteristics of Flexuarl-Shear Behavior of Beam Using Demonstrated CFRP Rod (국내 시범 생산 CFRP rod를 적용한 보 부재의 휨-전단 특성)

  • Choi, So-Yoeng;Kim, Il-Sun;Choi, Myoung-Sung;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.86-94
    • /
    • 2022
  • Replacement of FRP rod as steel reinforcement has been attracted significantly to prevent the degradation of the concrete structure due to corrosion. So, the technology development to extend the structure's service life by improving FRP properties has been proceeded worldwide. Accordingly, it is necessary to develop Korea's CFRP rod and CFRP grid, including the manufacturing techniques to improve the properties of high-strength and high-stiffness. Moreover, the research should be conducted to evaluate the structural behavior of the beams using the CFRP rod or grid. This study investigates the flexural and shear behavior of reinforced concrete beam using demonstrated CFRP rod as reinforcement according to the reinforcement ratio and shear span to depth ratio. From the results, when the reinforcement ratio is out of a specific range, it is seemed that the effect on performance improvement of the beam using CFRP rod is cancelled or not significant. Meanwhile, when the CFRP rod was used as reinforcement, the possibility of shear failure occurred, even steel stirrups were installed in the beam with CFRP rod as tensile reinforcement according to the Korean Design Standard. Therefore, when the CFRP rod is used as tensile reinforcement in a beam, it should be prepared that a specific limitation of reinforcement ratio and an investigation against shear failure. Also, the ductility of the beam using the CFRP rod is determined by the deformation energy evaluation method. So, the ductility should be investigated by applying the deformation energy evaluation method that reflects the structural behavior of the beam.

Mechanical Modeling of Pen Drop Test for Protection of Ultra-Thin Glass Layer (초박형 유리층 보호를 위한 펜 낙하 시험의 기계적 모델링)

  • Oh, Eun Sung;Oh, Seung Jin;Lee, Sun-Woo;Jeon, Seung-Min;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.49-53
    • /
    • 2022
  • Ultra-thin glass (UTG) has been widely used in foldable display as a cover window for the protection of display and has a great potential for rollable display and various flexible electronics. The foldable display is under impact loading by bending and touch pen and exposed to other external impact loads such as drop while people are using it. These external impact loads can cause cracks or fracture to UTG because it is very thin under 100 ㎛ as well as brittle. Cracking and fracture lead to severe reliability problems for foldable smartphone. Thus, this study constructs finite element analysis (FEA) model for the pen drop test which can measure the impact resistance of UTG and conducts mechanical modeling to improve the reliability of UTG under impact loading. When a protective layer is placed to an upper layer or lower layer of UTG layer, stress mechanism which is applied to the UTG layer by pen drop is analyzed and an optimized structure is suggested for reliability improvement of UTG layer. Furthermore, maximum principal stress values applied at the UTG layer are analyzed according to pen drop height to obtain maximum pen drop height based on the strength of UTG.

A Comparative Study on the International Competitiveness of Korea-China Cultural Products Trade (한중 문화상품무역 국제경쟁력 비교 연구)

  • Zheng, Yingrong;Bae, Ki-Hyung;Li, Na
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.9
    • /
    • pp.349-359
    • /
    • 2022
  • At present, with the diversified development of the global economy, the trade of cultural products has become an important factor affecting the competition of comprehensive strength among countries. As a neighboring country to China, South Korea has a similar cultural development environment to China. As an important pillar of South Korea's economy, cultural product trade, its development experience has reference significance for China. This paper adopts literature research method, comparative analysis method and empirical analysis method to conduct research. The article firstly analyzes the export level of China and South Korea from the scale of the import and export of cultural products, and finds the difference between the import and export of cultural products between the two countries. Then, it compares and analyzes the insufficiency of China's cultural product trade structure and the advantage of Korea's cultural product trade structure. Finally, this paper uses the stochastic frontier gravity model to conduct empirical analysis and draws relevant conclusions about the trade potential of cultural products between China and South Korea. The research results show that: (1) the international competitiveness of cultural products trade in China and South Korea is relatively high, but the competitiveness of China's cultural products has been improved slowly; (2) compared with South Korea, China's cultural product exports are affected by trade inefficiency factors larger. (3) The improvement of government efficiency has a great effect on reducing the inefficiency of trade in China.