• Title/Summary/Keyword: Strength Evaluation

Search Result 4,839, Processing Time 0.029 seconds

Analysis of the Segment-type Ring Burst Test Method for the Mechanical Property Evaluation of Cylindrical Composite Pressure Vessel (원통형 복합재료 압력 용기의 기계적 물성 평가를 위한 세그먼트 형 링 버스트 시험 방법 분석)

  • Kim, Woe Tae;Kim, Seong Soo
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2021
  • Composite materials have been widely applied for fabricating pressure vessels used for storing gaseous and liquid fuel because of their high specific stiffness and specific strength. Accordingly, the accurate measurement of their mechanical property, particularly the burst pressure or fracture strain, is essential prior to the commercial release. However, verification of the safety of composite pressure vessels using conventional test methods poses some limitations because it may lead to the deformation of the load transferring media or provoke an additional energy loss that cannot be ignored. Therefore, in this study, the segment-type ring burst test device was designed considering the theoretical load transferring ratio and applicable displacement of the vertical column. Moreover, to verifying the uniform distribution of pressure of the segment type ring burst test device, the hoop stress and strain distribution of ring specimens were compared with that of the hydraulic pressure test method via FEM. To conduct a simulation of the fracture behavior of the composite pressure vessel, a Hashin failure criterion was applied to the ring specimen. Furthermore, the fracture strain was also measured from the experiment and compared with that of the result from the FEM.

Evaluation of Impregnation and Mechanical Properties of Thermoplastic Composites with Different GF Content of GF/PP Commingled Fiber (유리섬유/폴리프로필렌 복합원사의 유리섬유 함량 변화에 따른 열가소성 복합재료의 함침 및 기계적 특성 평가)

  • Jang, Yeong-Jin;Kim, Neul-Sae-Rom;Kwon, Dong-Jun;Yang, Seong Baek;Yeum, Jeong Hyun
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.346-352
    • /
    • 2020
  • In mobility industries, the use of thermoplastic composites increased dynamically. In this study, the mechanical and impregnation properties of continuous glass fiber (GF)/polypropylene (PP) composite were evaluated with different GF contents. The GF/PP commingled fiber was manufactured with different GF contents and continuous GF/PP composite was manufactured using continuous compression molding process. Tensile, flexural, and impact test of specimens were evaluated with different GF contents. The fracture behavior of specimens was proved using field emission-scanning electron microscope images of fracture area and impregnation property was evaluated using dynamic mechanical analyzer and interlaminar shear strength. Finally, the GF/PP composite was the optimized mechanical and impregnation properties using 50 wt.% GF/PP commingled fiber.

Evaluation of Process Performance and Mechanical Properties according to Process Variables of Pneumatic Carbon Fiber Tow Spreading (공기에 의한 탄소섬유 스프레딩 공정 변수에 따른 프로세스 성능 및 기계적 물성 평가)

  • Roh, Jeong-U;Baek, Un-Gyeong;Roh, Jae-Seung;Nam, Gibeop
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.390-394
    • /
    • 2020
  • The carbon fiber has been damaged via tow spreading process for carbon fiber spread tow. The fiber damage is caused by friction between equipment and fibers or between fibers and fibers in the process of spreading. As a result, mechanical properties are decreased due to differences in process via material and equipment condition. Therefore, minimizing fiber damage have to be considered in the process. In this study, the change in carbon fiber pneumatic spreading process was observed by according to the filament count, sizing content of carbon fiber and process variables in spreading equipment (fiber tension at the beginning, air temperature in spreading zone, vacuum pressure in spreading zone). Tensile strength was evaluated using samples prepared under optimal conditions for each of the carbon fiber varieties, and mechanical properties were reduced due to damage on the carbon fiber.

Analysis of Application Cases and Evaluation of Effectiveness on Portable Dynamic Cone Penetration Test (DCPT) to Identify the Deterioration Cause of Damaged Reinforced Earth Walls (보강토옹벽의 피해원인 규명을 위한 휴대형 동적콘관입시험(DCPT) 적용사례 분석 및 효용성 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.95-109
    • /
    • 2020
  • In this study, a total of six site cases were reviewed to assess the site applicability of portable dynamic cone penetration test (DCPT) by identifying the cause of damage to the damaged reinforced earth wall using portable dynamic cone penetration test. An improved dynamic concrete penetration tester was used at the site to enable ground surveys of more than 6 meters. The test results were compared with the results of the standard penetration test (SPT) and the correlation was analyzed. Through the analysis of various field application cases, it was found that portable dynamic cone penetration test was very convenient to apply at the site of the damaged reinforced earth wall, and DCPT could play a major role in identifying the cause of damage and verifying stability of the retaining wall by continuously identifying the ground strength. In addition, it was found that the results of the dynamic cone penetration test and the standard penetration test showed a correlation of N≒(1/3~2/3)·Nd in sandy soil.

Evaluation of Impregnating and Mechanical Properties for Glass Fiber/Polycarbonate Composites Depending on Molecular Weight of Matrix (유리섬유/폴리카보네이트 복합재료의 기지 분자량에 따른 함침 및 기계적 물성 평가)

  • Kim, Neul-Sae-Rom;Jang, Yeong-Jin;Lee, Eun-Soo;Kwon, Dong-Jun;Yang, Seong Baek;Lee, Jungeon;Yeum, Jeong Hyun
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Fiber-reinforced thermoplastic composites are applied to transport industries to lightweight of body, and applications will be expanded gradually. In this study, the impregnation and mechanical properties of continuous glass fiber (GF) reinforced polycarbonate (PC) composites were evaluated with different molecular weights of PC. The continuous GF reinforced PC composite were prepared by using GF fabric and PC film via continuous compression molding method. The melting flow index and tensile strength of PC matrix were evaluated with different molecular weights. Mechanical properties (tensile, flexural, and compressive) and pore rate of GF/PC composite were evaluated with different molecular weights of PC. The fracture behavior was analyzed to fracture surface of GF/PC composite using FE-SEM images. As these results, it was condition of representing the best mechanical property that the GF/PC composite was prepared by using PC of 20,000 g/mol as matrix.

Improvement of Catastrophic Forgetting using variable Lambda value in EWC (가변 람다값을 이용한 EWC에서의 치명적 망각현상 개선)

  • Park, Seong-Hyeon;Kang, Seok-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2021
  • This paper proposes a method to mitigate the Catastrophic Forgetting phenomenon in which artificial neural networks forget information on previous data. This method adjusts the Regularization strength by measuring the relationship between previous data and present data. MNIST and EMNIST data were used for performance evaluation and experimented in three scenarios. The experiment results showed a 0.1~3% improvement in the accuracy of the previous task for the same domain data and a 10~13% improvement in the accuracy of the previous task for different domain data. When continuously learning data with various domains, the accuracy of all previous tasks achieved more than 50% and the average accuracy improved by about 7%. This result shows that neural network learning can be properly performed in a CL environment in which data of different domains are successively entered by the method of this paper.

Analysis of Number of Elastically Cross-links to Predict the Mechanical Properties of 3D Networked Poly(sodium acrylate) Gel (폴리아크릴산나트륨 3차원 네트워크 겔의 물성 예측을 위한 가교개수밀도 분석)

  • Kim, Sang Jin;Jeong, Hye-Won;Shin, Sung Gyu;Cho, Sung Woo;Jeong, Jae Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.300-308
    • /
    • 2021
  • In this study, 3D networked poly(sodium acrylate) gel was polymerized and controlled with the crosslinking environment to evaluate the mechanical properties and swelling behavior. In general, as the degree of crosslinking in a pre-gelled solution increases, the swelling ratio of the 3D networked gel decrease while the mechanical strength of the gel increases. Interestingly, this study demonstrates that the polymerization and crosslinking efficiency in gelling process could be depended on the crosslinking environment by evaluating the number of elastically cross-links in 3D networked gel. As a result, the number of elastically corss-links would be changed with 3.6 times as varying of the crosslinking environment while keeping the degree of crosslinking. It is expected that the 3D networked gel would be optimized as an effective absorbing agent for VOCs by using the gel evaluation method based on the number of elastically cross-links.

Suggestion of a Evaluation Method for Variation of Concrete Workability According to Pumping Condition through Lab-Scale Test (펌핑 조건에 따른 콘크리트 작업성 변화 실내 평가 방법 제안)

  • Lee, Jung-Soo;Jang, Kyong-Pil;Kwon, Seung-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.413-420
    • /
    • 2020
  • In this study, a new lab-scale test equipment was developed to evaluate the variation of concrete workability after pumping. The equipment was designed to simulate the pressure and shearing applied to concrete during actual pumping. In order to examine the feasibility of evaluating variation of concrete workability through lab-scale test equipment, real-scale pumping tests and lab-scale tests were performed together. The design strength of concrete used in the both tests was 24, 35, and 60MPa, and the length of pipe used in pumping tests was 130, 304, and 518m. The lab-scale tests were performed in consideration of actual pumping conditions(pressure, shearing, and pumping duration time). The workability(slump or slum flow) of concrete was measured before test, after the pumping test, and after lab-scale test. In all tests, workability of all concrete mixtures decreased. In addition, the results of both tests were measured greatly similarly.

An Experimental Study on the Development of Electro Magnetic Pulse Shielding Cement Using Milled Carbon Fiber (저 직경 카본섬유를 사용한 전자기 펄스 차폐 시멘트 개발에 관한 실험적 연구)

  • Min, Tae-Beom
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.429-435
    • /
    • 2020
  • In this study, physical properties and EMP shielding performance evaluation of cement paste according to the amount of milled carbon fiber was conducted to develop EMP shielding cement using carbon fiber. The length of the milled carbon fiber used was 100㎛, and it was used as a cement admixture because it showed a powdery form to the naked eye. As a result of the experiment, when 5% of the amount of cement was used, the milled carbon fiber was effective in compressive strength and EMP shielding, and the shielding effect did not increase when used beyond that. As a result of examining the EMP shielding performance according to the thickness of the specimen, the plain without milled carbon fiber had no effect of increasing the shielding rate according to the thickness. The shielding performance of the specimens using the milled carbon fiber increased as the thickness increased. Therefore, in order to increase the EMP shielding rate when comparing and evaluating the performance according to the amount of milled carbon fiber used and the thickness of the specimen, 5% of the milled carbon fiber used is optimal. In addition, the method of increasing the thickness is considered to be effective.

Evaluation of Nonlinear Seismic Response of RC Shear Wall in Nuclear Reactor Containment Building (원자로건물의 철근콘크리트 전단벽 비선형 지진응답 평가)

  • Kim, Dae Hee;Lee, Kyung Koo;Koo, Ji Mo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.385-392
    • /
    • 2021
  • Interest in the seismic performance of nuclear facilities under strong earthquakes has increased because their nonlinear response is important. In this paper, we proposed appropriate parameters for the nonlinear finite element analysis of a concrete material model, for a reinforced concrete (RC) shear wall in nuclear facilities: maximum tensile strength, dilation angle, and damage parameter. The study of the effects of the important parameters, on the nonlinear behavior and shear failure mode of the RC shear wall having low aspect ratio, was conducted using ABAQUS finite element analysis program. Based on the study results the nonlinear response of a nuclear reactor containment building (RCB) subjected to a strong earthquake was evaluated using nonlinear time-history analysis.