• Title/Summary/Keyword: Strength/Stress ratio

Search Result 1,075, Processing Time 0.028 seconds

Ducti1ity, Evaluation of Circular Reinforced Concrete Piers with an Internal Steel Tube (강관 내무보강 중공교각의 연성도 평가)

  • 강영종;최진유;김도연;한택희
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.241-248
    • /
    • 2001
  • The ductility of circular hollow reinforced concrete columns with one layer of longitudinal and spiral reinforcement placed near the outside face of the section and the steel tube placed on the inside face of the section is investigated. Such hollow sections are confined through the wall thickness since the steel tube is placed. The results of analytical moment-curvature analyses for such hollow sections are compared with those for the circular section with the sane diameter. In this study, moment-curvature analyses are conducted with Mandel's confined concrete stress-strain relationship in which the effect of confinement is to increase the compression strength and ultimate strain of concrete. The moment-curvature analyses confirmed that the ductility is primarily influenced on the ultimate strain. The variables influenced on the ultimate strain is the ratio and yield strength of confining reinforcement and the compression strength for confined concrete. From this ultimate strain - the transverse reinforcement ratio relationship, the transverse reinforcement ratio for circular hollow reinforced columns with confinement is proposed. The proposed transverse reinforcement ratio is confirmed by experimental results.

  • PDF

Span limit and parametric analysis of cable-stayed bridges

  • Zhao, Xinwei;Xiao, Rucheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.271-282
    • /
    • 2019
  • The span record of cable-stayed bridges has exceeded 1,000 m, which makes research on the maximum possible span length of cable-stayed bridges an important topic in the engineering community. In this paper, span limit is discussed from two perspectives: the theoretical span limit determined by the strength-to-density ratio of the cable and girder, and the engineering span limit, which depends not only on the strength-to-density ratio of materials but also on the actual loading conditions. Closed form equations of both theoretical and engineering span limits of cable-stayed bridges determined by the cable and girder are derived and a detailed parametric analysis is conducted to assess the engineering span limit under current technical conditions. The results show that the engineering span limit of cable-stayed bridges is about 2,200 m based on materials used available today. The girder is the critical member restricting further increase in the span length; its compressive stress is the limiting factor. Approaches to increasing the engineering span limit are also presented based on the analysis results.

Simplified approach for the evaluation of critical stresses in concrete pavement

  • Vishwakarma, Rameshwar J.;Ingle, Ramakant K.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.389-396
    • /
    • 2017
  • Concrete pavements are subjected to traffic and environmental loadings. Repetitive type of such loading cause fatigue distress which leads to failure by forming cracks in pavement. Fatigue life of concrete pavement is calculated from the stress ratio (i.e. the ratio of applied flexural stress to the flexural strength of concrete). For the correct estimation of fatigue life, it is necessary to determine the maximum flexural tensile stress developed for practical loading conditions. Portland cement association PCA (1984) and Indian road congress IRC 58 (2015) has given charts and tables to determine maximum edge stresses for particular loading and subgrade conditions. It is difficult to determine maximum stresses for intermediate loading and subgrade conditions. The main purpose of this study is to simplify the analysis of rigid pavement without compromising the accuracy. Equations proposed for determination of maximum flexural tensile stress of pavement are verified by finite element analysis.

Experimental Study on Stress Evaluation Study on Stress Evaluation of Unbonded Tendon under Ultimate Load (극한하중상태에서 비부착 긴장재의 응력평가에 관한 실험연구)

  • 임재형;문정호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.519-524
    • /
    • 1998
  • The current study is a part of series of research about the evaluation method of the unbonded tendon stress in prestressed concrete member at flexural failure. As the experimental study, a test program with 14 beams and slabs was planed to identify the contribution of each important variable. The variables are (1) the effective prestress, (2) the concrete strength, (3) the amount of tendons (4) the amount of bonded reinforcements, (5) the loading type, (6) the span/depth ratio. It was found that the tendon stress increment decreases as the effective prestress increases. Also, the contributions of concrete strength, amount of tendons, bonded reinforcements, and loading type were observed to affect on tendon stresses. However, the tendon stress increments were minimal at high values of span/depth in contrast with the ACI Code.

  • PDF

Stress-Strain Response and Fracture of a Plain Concrete in Biaxial Loading (이축 하중을 받는 콘크리트의 응력-변형률 응답 및 파괴)

  • 이상근;송영철;권용길;한상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.921-926
    • /
    • 2001
  • In this paper the biaxial failure criteria and stress-strain response for plain concrete are studied under uniaxial and biaxial stress(compression-compression, compression-tension, and tension-tension combined stress). The concrete specimens of a square plate type are used for uniaxial and biaxial loading. The experimental data indicate that the strength of concrete under biaxial compression, f2/fl=-l/-1, is 17 percent larger than under uniaxial compression and the poisson's ratio of concrete is 0.1745. On the base of the results, a biaxial failure envelope for plain concrete that the uniaxial strength is 398kgf/$cm^{2}$ are developed. The biaxial failure behaviors for three biaxial loading areas are also plotted respectively. In addition, the characteristics of stress-strain response under biaxial compression are compared and verified with the experimental and analytical results.

  • PDF

A Study of Shot Peened Spring Steel(SUP9) for Fatigue Life Improvement and Compressive Residual Stress Disappearance on the High Temperature (SUP9 스프링강의 숏피닝가공에 의한 피로수명향상과 고온환경에서의 압축잔류응력 소멸현상에 관한 연구)

  • Park, Kyoung-Dong;Son, Myoung-Koon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.22-31
    • /
    • 2003
  • The compressive residual stress, which is induced by shot peening process, seems to be an Important factor in increasing the fatigue strength. And then it was showed that residual stress was disappearenced at the high temperature. The fatigue charateristic investigation of a SUP9 spring steel processed shot peening is performed by considering the high temperature service conditions in the range of room temperature through $180^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. The fatigue resistance characteristics and fracture strength at high temperature is considerable lower than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

Effect of Stress Waveform on Corrosion Fatigue Crack Propagation in High Strength Steels-the Role of Anodic Dissolution Mechanism (고장력강의 부식피로균열전파에 미치는 하중파형의 영향과 양극용해기구의 역할)

  • 하회석;이성근
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.147-155
    • /
    • 1993
  • The effect of stress waveforms on corrosin fatigue and the role of dissolution mechanism in 3NilCr steel and 20Ni maraging steel have been investigated in aerated 3% NaCl solution and synthetic seawater under sinusoidal, triangular, square, positive sawtooth, negative sawtooth, and trapezoidal stress waveforms with open circuit at frequency of 1Hz and stress ratio of 0.1. The crack growth rates under square waveform were substantially lower than under sinusoidal and triangular waveforms, but the crack growth rates under sinusoidal waveform were slightly higher under triangular waveform. For a given frequency the growth rates under the positive sawtooth waveform are higher than those under the negative sawtooth waveform. The fatigue crack growth rates of most specimens were in good agreement with the values calculated by the model based on the dissoultion mechanism.

  • PDF

A Study of Shot peened Spring Steel for Fatigue Life Improvement and Compressive Residual Stress Disappearance on the High Temperature (SUP9 스프링강의 쇼트피닝가공에 의한 피로수명향상과 고온환경에서의 압축잔류응력 소멸현상에 관한 연구)

  • Park, Keyoung-Dong;Son, Myung-Koon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.347-353
    • /
    • 2002
  • The compressive residual stress, which is induced by shot peening process, seems to be an important factor of increasing the fatigue strength. And then it was showed that residual stress was disappearenced at the high temperature. The fatigue characteristic study of a SUP9 spring steel processed shot peening is performed by considering the high temperature service conditions in the range of room temperature through $180^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. The fatigue resistance characteristics and fracture strength at high temperature is considerable lower than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

A Study on the Working Pressure of TBP used in Tall Building (초고층건축물에 사용되는 분기배관의 사용압력에 관한 연구)

  • Lee, Sung-Ho;Kim, Hei-Song
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.5
    • /
    • pp.351-356
    • /
    • 2008
  • In this study, we had the stress analyses of TBP used in Tall Building and determined the working pressure of TBP. We knew the four fact. First, the place acted maximum stress is axial direction of branched part. Second, working pressure is more than 2.0 MPa. Third, stress in branched part is less than yielding strength at hydrostatic test pressure. Fourth, the ratio(stress/yielding stress at hydrostatic test pressure) is $0.4{\sim}0.6$(KS D 3562 Sch 40), $0.3{\sim}0.4$(KS D 3576 20S).

A Study the Development of Bevel Gears Design System (베벨기어 설계 시스템 개발에 관한 연구)

  • 조성철
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.263-269
    • /
    • 2002
  • Design method for Involute bevel gears is developed. The developed gear design system can design the optimized gear that minimize the number of pinion teeth with face tooth. Method of optimization is MS(matrix search) which is developed from this study. Design variables are pressure angle 20, transmitted power, gear volume, gear ratio, allowable contact stress and allowable bending stress, etc. Design method developed this study can bd applide to the plane, machine tools, automobiles.

  • PDF