• Title/Summary/Keyword: Strength/Stress ratio

Search Result 1,077, Processing Time 0.023 seconds

A Study on the Fatigue Strength of Compressed Air Tank for Ships(I) (선박용 압축공기 탱크의 피로강도에 관한 연구(I))

  • Kim Jon-Ho;An Jae-Hyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.923-928
    • /
    • 2005
  • The estimation of fatigue life at the design stage of the compressed air tank on board is very important in order to arrive at feasible and reliable solutions considering the total lifetime of the tank. In this paper the compressed air tank on board was selected as a model and the change of inside pressure of the tank during normal navigation period was measured and the cycle of fluctuation stress was presumed statistically based on this. Also the effect of stress concentration with the FEM analysis on the longitudinal weld and the mean stress effect on the fatigue strength of compressed air tank were discussed.

Evaluation Method of Bonded Strength in Adhesively Bonded Structures of the Aluminum Alloys (알루미늄 합금의 접착구조물에 대한 접착강도의 평가방법)

  • 정남용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.35-44
    • /
    • 1999
  • In a view point of earth environmental protection and social requirement, adhesively bonded structures of aluminum alloys have become to be employed for the purpose of decreasing fuel ratio by weight reduction and to improve performance in various engineering fields such as aircrafts, automobiles, rolling stocks and so on. In spite of such wide applications in adhesively bonded structures of aluminum alloys, the quantitative fracture criterion and evolution method of its bonded strength have not been established yet. The objective of this paper is to establish fracture criterion considering stress singularity at interface edges in adhesively bonded structures of aluminum alloys. Through the analyses of boundary element method and static fracture experiments with three different types of specimens in the adhesively bonded joints of aluminum alloys, its fracture criterion was proposed and discussed about strength evolution of adhesively bonded structures.

  • PDF

Estimation of Probability Distribution of Fatigue Lives in Crank Throw Forged Steel (크랭크스로 단조강의 피로수명의 확률분포 추정)

  • Kim, Seon-Jin;Ahn, Seok-Hwan
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.29-35
    • /
    • 2016
  • Because of the severe service environment of the large marine vessel, the fatigue strength and its evaluation play an important role in design and maintenance of marine crankshaft. The aim of this work is to investigate the probability distribution of fatigue lives in crank throw forged steel and to develop the methodology for estimation of the probabilistic design fatigue strength. Detailed studies were performed on the constant amplitude axial loading fatigue test. The experiments were controlled by stress ratio of -1 and 15Hz frequency for each stress level. The considerable variability of fatigue life was observed in each stress level under rigidly controlled constant fatigue testing conditions. The fatigue life of crank throw forged steel was well followed the log-normal and Weibull distribution. In addition, it can be used for the estimation of probabilistic design fatigue strength by using the proposed methodology.

A Study of Bond Strength of Nickel-Chromium Alloys with Porcelain in Ceramometal System (상이(霜異)한 Ceramometal System에 있어서 Nickel-Chromium합금과 도재(陶材)와의 결합강도(結合强度)에 관(關)한 비교실험연구(比較實驗硏究))

  • Kim, Chee-Young
    • Journal of Technologic Dentistry
    • /
    • v.7 no.1
    • /
    • pp.19-25
    • /
    • 1985
  • In oder to compare and measure bond strength of ceramometal system with use of ceramco porcelain powder including SnO2 and uni metal, Rexillium III, Vera Bond as non precious alloys manufactured for porecelain-metal restorations. Total 24 test sample were constructed. All Test sample were measured with a Mitutoyo micrometer graduated to 0.01mm. It is as follows measured of thickness 3.3mm(metal : 1.1mm, porcelain: 2.2mm), width 12mm, length 30mm(porcelain 12mm x 12mm), Compared maximum bending stress test. The results obtained were as follows: 1. Bond strength of each metal with ceramco porcelain powder showed statistical significance.(P<0.05) 2. Vera Bond and uni metal, uni metal and Rexillium III revealed no statistical Significance.(P>0.05) Vera Bond and Rexillium III showed statistical significance.(P<0.05) 3. The order of maximum bending stress was Rexillium III, uni metal, vera Bond. The order of bond strength ratio making bending stress was Vera bond, uni metal, Rexillium III.

  • PDF

A Comparitive Study on the Ultimate Tendon Stress of Unbonded Tendon According to Various Codes (규격별 비부착 긴장재의 극한응력식에 대한 비교 연구)

  • 유성원;서정인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.501-506
    • /
    • 2002
  • The unbonded prestressed concrete(PSC) members exhibit very different structural behavior from that of bonded PSC members because of having different tendon stress increment. Recently, AASHTO changed the provision of ultimate tendon stress with unbonded tendons, because some researches tried to improve the provision of ultimate tendon stress with unbonded tendons. The purpose of the present study is to compare various Codes with the ultimate failure stresses of prestressing(PS) steels for the unbonded PSC members. To this end, Some national Codes have been collected and analyzed. A series of major influencing variables have been included in the analysis. It was found that the span-depth ratio, neutral axis depth-effective depth ratio, concrete compressive strength, effective prestress, and prestressing steel ratio have great influence on the ultimate failure stress of PS steel in unbonded PSC members. The Comparison indicates that existing formulas including ACI and domestic Code's equations shows some unwarranties. The present study allows more realistic analysis and design of prestressed concrete structures with internal unbonded tendons.

  • PDF

Effect of Stress Ratio on Fatigue Fracture of a Shot Peening Marine Structural Steel (쇼트피닝 가공된 해양구조용강의 피로파괴에 미치는 응력비의 영향)

  • PARK KYOUNG-DONG;JIN YOUNG-BEOM;PARK HYOUNG-DONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.43-49
    • /
    • 2004
  • The lightness of components required in the automobile and machine industry necessitates the use of high strength components. In particular, the fatigue failure phenomena, which occurs when using metal, increases the danger to human life and property. Therefore, antifatigue failure technology is an integral part of current industries. Currently, the shot peening is used for removing the defect from the surface of steel, while improving the fatigue strength on surface. Therefore, in this paper, the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in a stress ratio(R=0.1, R=0.3, R=0.6) was investigated, giving consideration to fracture mechanics. By using the methods mentioned above, following conclusions are drawn: (1) The fatigue crack growth rate(da/dN) of the shot-peening material was lower than that of the un-peening material and in stage I, ΔKth, the threshold stress intensity factor of the shot-peen processed material is high in critical parts, unlike the un-peening material. Also m, fatigue crack growth exponent and number of cycle of the shot-peening material, was higher than that of the un-peening material, as concluded from effect of da/dN. (2) Fatigue life shows more improvement in the shot-peening material than in the un-peening material, and the compressive residual stress of surface on the shot-peen processed operate resistance of fatigue crack propagation.

Variation of Undrained Shear Behavior with Consolidation Stress Ratio of Nakdong River Sand (압밀응력비에 따른 낙동강모래의 비배수전단거통 특성)

  • 김영수;정성관;송준혁;정동길
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.83-93
    • /
    • 2003
  • This research, in order to study the effects of initial shear stress of anisotropically consolidated sand that has 0.558% fines, performed several undrained static and dynamic triaxial test. To simulate the real field conditions, loose and dense samples were prepared. Besides, the cyclic shear strength of Nakdong River sand under various combinations of initial static shear stress, stress path, pore water pressure and residual strength relationship was studied. By using Bolton's theory, peak internal friction angle at failure which has considerable effects on the relative density and mean effective stress was determined. In p'- q diagram, the phase transformation line moves closer to the failure line as the specimen's initial anistropical consolidation stress increases. Loose sands were more affected than dense sands. The increase of consolidation stress ratio from 1.4 to 1.8 had an effect on liquefaction resistance strength resulting from the increase of relativity density, and showed similar CSR values in dense specimen condition.

Characteristics of Fracture Energy on Steel Fiber-Reinforced Lightweight Polymer Concrete

  • Youn, Joon-No;Sung, Chan-Yong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.11-19
    • /
    • 2003
  • In this study, unsaturated polyester resin, artificial lightweight coarse aggregate, artificial lightweight fine aggregate, heavy calcium carbonate and steel fiber were used to produce a steel fiber-reinforced lightweight polymer concrete with which mechanical properties were examined. Results of this experimental study showed that the flexural strength of unnotched steel fiber-reinforced lightweight polymer concrete increased from 8.61 to 13.96 MPa when mixing ratio of fiber content increased from 0 to 1.5%. Stress intensity factors($K_{IC}$) increased with increasing fiber content ratio while it did not increase with increasing notch ratio. Energy release rate ($G_{IC}$) turned out to depend upon the notch size, and it increased with increasing steel fiber content.

Capacity and the moment-curvature relationship of high-strength concrete filled steel tube columns under eccentric loads

  • Lee, Seung-Jo
    • Steel and Composite Structures
    • /
    • v.7 no.2
    • /
    • pp.135-160
    • /
    • 2007
  • Recently, CFT column has been well-studied and reported on, because a CFT column has certain superior structural properties as well as good productivity, execution efficiency, and improved rigidity over existing columns. However, CFT column still has problems clearing the capacity evaluation between its steel tube member and high-strength concrete materials. Also, research on concrete has examined numerical values for high-strength concrete filled steel square tube columns (HCFT) to explain transformation performance (M-${\phi}$) when a short-column receives equal flexure-moment from axial stress. Moment-curvature formulas are proposed for HCFT columns based on analytic assumption described in this paper. This study investigated structural properties (capacity, curvature), through a series of experiments for HCFT with key parameters, such as strength of concrete mixed design (58.8 MPa), width-thickness ratio (D/t), buckling length to sectional width ratio (Lk/D) and concrete types (Zeolite, Fly-ash, Silica-fume) under eccentric loads. A comparative analysis executed for the AISC-LRFD, AIJ and Takanori Sato, etc. Design formulas to estimate the axial load (N)-moment (M)-curvature (${\phi}$) are proposed for HCFT columns based on tests results described in this paper.

Evaluation of Static and Dynamic Characteristics of Coal Ashes (석탄회의 정적 및 동적 특성 평가)

  • Yoon, Yeowon;Chae, Kwangsuk;Song, Kyuhwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.5-12
    • /
    • 2009
  • This study presents static and dynamic strength of coal ashes collected from disposal site of power plant. Main compositions of coal ashes were bottom ashes. In order to evaluate static and dynamic characteristics of coal ash, NGI direct-simple shear tests, cyclic simple shear tests and direct shear tests were conducted. The strengths of coal ashes from those tests were compared to those of sands. Bottom ashes among coal ashes used for this study were classified as sand from the grain size distribution and show higher strength properties than the sands. For utilization of coal ashes in civil engineering project, mixing coal ashes with sandy soil using batch plant is inconvenient and the cost is higher than the spreading sand layer and coal layer alternately. In order to simulate both mixing type and layered type construction, sands and coal ashes were mixed with volume ratio 50:50 and prepared sand and coal ash layers alternately with the same volume ratio. From the tests mixed coal ashes-specimen shows slightly higher static and cyclic strength than the layered specimen at the same density. The higher strength seems due to the angular grain of bottom ashes. The cyclic stress ratio at liquefaction decreases rapidly as the number of cycle increases at mixed specimen than that of layered specimen.

  • PDF