• Title/Summary/Keyword: Streamline curvature method

Search Result 26, Processing Time 0.02 seconds

A Computerized Axial Flow Fan Design System for Noise and Performance Analysis (성능 및 소음 해석 기능이 수반된 전산화된 축류 송풍기 설계 체제)

  • Chung, Dong-Kyu;Noh, Jun-Gu;Seo, Jae-Young;Lee, Chan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.37-42
    • /
    • 2001
  • A computerized axial flow fan design system is developed with the capabilities for predicting the aerodynamic performance and the noise characteristics of fan. In the present study, the basic fan blading design is made by combining vortex distribution scheme with camber line design, airfoil selection, blade thickness distribution and stacking of blade elements. With the designed fan blade geometry, the through-flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with spanwise total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuation induced by wake vortices of fan blades and to radiate as dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fans. Furthermore, the present method is shown to be very useful in designing the blade geometry of new fan and optimizing design variables of the fan to achieve higher efficiency and lower noise level.

  • PDF

Development of a Test Rig for Three-Dimensional Axial-Type Turbine Blade (축류형 3차원 터빈익형의 성능시험장치 개발)

  • Chang, B.I.;Kim, D.S.;Cho, S.Y.;Kim, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.453-460
    • /
    • 2000
  • A test rig is developed for performance test of 1 stage axial-type turbine which is designed by meanline analysis, streamline curvature method, and blade design method using configuration parameters. The purpose of this study is to find the best configuration parameters for designing a high efficiency axial-type turbine blade. To measure the efficiency of turbine stage, a dynamo-meter is installed. Two different stators which are manufactured as an integrated type are developed, and a rotor blade and 5 sets disc are developed for setting different stagger angle. The tip and hub diameters of the test turbine are 300 and 206.4mm, respectively. The rotating speed is 1800RPM, and the extracted power is 2.5kW. Flow coefficient is 1.68 and the reaction factor at meanline is 0.373. The number of stator and rotor of test turbine are 31 and 41, respectively. The Mach number of stator exit flow near hub is 0.164.

  • PDF

Calculation of 3-Dimensional Flow Through an Impeller of Centrifugal Compressor (원심압축기 회전차 내부의 3차원 유동해석)

  • ;;Kang, S. H.;Jeon, S. G.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2617-2629
    • /
    • 1995
  • The flow through a centrifugal compressor rotor was calculated using the quasi-3-dimensional and fully 3-dimensional Navier-Stokes solution methods. The calculated results, obtained during the development of the computer codes for both methods are discussed. In the inviscid quasi 3-dimensional analysis, stream function formulation was used for the blade to blade (B-B) plane calculations, and the streamline curvature method was used for the meridional (H-S) plane calculations. In the viscous 3-dimensional flow analysis, a control volume method based on a general rotating curvilinear coordinate system was used to solve the time-averaged Navier-Stokes equations, and a standard k-.epsilon. model was used to obtain eddy viscosity. The quasi-3-dimensional analysis reasonably predicts the pressure distributions and requires much less computation time in the region where viscous effects are not strong; however, it fails to predict velocity field and loss mechanism through the impeller passage. The viscous 3-dimensional flow analysis shows reasonable pressure distributions and typical jet-wake flow field through the impeller passage. Secondary flow and total pressure distributions on cross-sectional planes explain the loss mechanisms through the impeller.

Three Dimensional Unsteady Flow Characteristics inside the Catalytic Converter of 6 Cylinder Gasoline Engine (6기통 가솔린 엔진에 장착된 촉매변환기 내의 3차원 비정상 유동특성 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.108-120
    • /
    • 1998
  • A theoretical study of three-dimensional unsteady compressible non-reacting flow inside double flow of monolith catalytic converter system attached to 6-cylinder engine was performed for the achievement of performance improvement, reduction of light-off time, and longer service life by improving the flow distribution of pulsating exhaust gases. The differences between unsteady and steady-state flow were evaluated through the numerical computations. To obtains the boundary conditions to a numerical analysis, one dimensional non-steady gas dynamic calculation was also performed by using the method of characteristics in intake and exhaust system. Studies indicate that unsteady representation is necessary because pulsation of gas velocity may affect gas flow uniformity within the monolith. The simulation results also show that the level of flow maldistribution in the monolith heavily depends on curvature and angles of separation streamline of mixing pipe that homogenizes the exhaust gas from individual cylinders. It is also found that on dual flow converter systems, there is severe interactions of each pulsating exhaust gas flow and the length of mixing pipe and junction geometry influence greatly on the degree of flow distribution.

  • PDF

Design Optimization of Axial Flow Fan Using Genetic Algorithm (유전자 알고리즘을 이용한 축류 송풍기 설계최적화)

  • Yoo, In-Tae;Ahn, Cheol-O;Lee, Sang-Hwan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.397-403
    • /
    • 2003
  • In an attempt to solve multiobjective optimization problems, weighted sum method is most widely used for the advantage that a designer can consider the relative significance of each object functions by weight values but it can be highly sensitive to weight vector and occasionally yield a deviated optimum from the relative weighting values designer designated because the multiobjective function has the form of simple sum of the product of the weighting values and the object functions in traditional approach. To search the design solution well agree to the designer's weighting values, we proposed new multiobjective function which is the functional of each normalized objective functions and considered to find the design solution comparing the distance between the characteristic line and the ideal optimum. In this study, proposed multiobjective function was applied to design high efficiency and low noise axial flow fan and the result shows this approach will be effective for the case that the qualify of the design can be highly affected by the designer's subjectiveness represented as weighting values in multiobjective design optimization process.

  • PDF

Parametric Study for the Optimal Integration Design between the Gas Turbine Compressor and the Air Separation Unit of IGCC Power Plant (석탄가스화 복합발전플랜트 가스터빈 압축기와 공기분리장치 간의 최적 연계설계를 위한 매개변수연구)

  • Lee, Chan;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.160-169
    • /
    • 1996
  • Parametric studies are conducted for optimizing the integration design between gas turbine compressor and air separation unit (ASU) of integrated gasification combined cycle power plant. The present study adopts the ASU of double-distillation column process, from which integration conditions with compressor such as the heat exchanger condition between air and nitrogen, the amount and the pressure of extracted air are defined and mathematically formulated. The performance variations of the compressor integrated with ASU are analyzed by combining streamline curvature method and pressure loss models, and the predicted results are compared with the performance test results of actual compressors to verify the prediction accuracy. Using the present performance prediction method, the effects of pinch-point temperature difference (PTD) in the heat exchanger, the amount and the pressure of extracted air on compressor performances are quantitatively examined. As the extraction air amount or the PTD is increased, the pressure ratio and the power consumption of compressor are increased. The compressor efficiency deteriorates as the increase of the flow rate of air extracted at higher pressure level while improving at lower pressure air extraction. Furthermore, through the characteristic curve between generalized inlet condition and efficiency of compressor, optimal integration condition is presented to maximize the compressor efficiency.

  • PDF