• Title/Summary/Keyword: Streaming Transmission

Search Result 281, Processing Time 0.031 seconds

The RELAY Module Design of Multi SNS Channel Auto Streaming Server (다중 SNS 채널 자동 스트리밍 서버의 RELAY 모듈 설계)

  • Ahn, Heuihak;Lee, Daesik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.213-219
    • /
    • 2017
  • Streaming server is that an image produced in real time or a file form of image produced ahead consists of SNS service, and the relay module of streaming server includes output management module that set an output channel more than 2 and control transmission of video content. This thesis intends to suggest how to stream through plural output channel that contains output channel of external streaming server using relay module and do streaming provided to terminal receiving image, and streaming server, streaming system for this. Thus, by extending output channel sending out image to output channel of external streaming server, the scale of streaming server is not limited and the process allotting external streaming server into output channel sending the image becomes simple, so management of output channel becomes efficient even when sending several images.

Internet Teleoperation of a Robot with Streaming Buffer System under Varying Time Delays

  • Park, J.H.;J. Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.82.1-82
    • /
    • 2001
  • It is known that existence of irregular transmission time delay is a major bottleneck for application of advanced robot control schemes to internet telerobotic systems. In the internet teleoperation system, the irregular transmission time delay causes a critical problem, which is unstable and inaccurate. This paper suggests a practical internet teleoperation system with streaming buffer system, which consists of a buffer, a buffer manager, and a control timer. The proposed system converts the irregular transmission time delay to constant. So, the system effectively transmits the control input to a remote site to operate a robot stably and accurately. This feature enables short control input interval. That means the entire system has ...

  • PDF

Adaptive Video Streaming System Using Receiver Caching (수신단 캐싱을 활용한 적응형 비디오 스트리밍 시스템)

  • Kim, Yu-Sin;Jeong, Moo-Woong;Shin, Jae Min;Ryu, Jong Yeol;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.837-844
    • /
    • 2019
  • As the demand for video streaming has been rapidly increasing recently, video streaming schemes for increasing the efficiency of radio resource has attracted a lot of attention. In this paper, we propose an adaptive video streaming scheme to enhance the efficiency of video streaming by using receivers' caching capability. The proposed streaming scheme can transmit video data on a broadcast basis even when two clients request different video data, only if specific conditions satisfied, while existing schemes can only transmit video data on a broadcast basis only when two clients request the same video data. In this paper, we mathematically derive the average transmission time of the proposed scheme and the approximation of the average transmission time. The accuracy of the mathematical analysis is verified by simulations. Mathematical analysis and simulation results show that the proposed scheme can significantly reduce the average transmission time, compared to the existing scheme.

Commercial 4K UHD Streaming Device over 5G Mobile Communication Network (5G 이동통신망을 통한 상용 4K UHD 스트리밍 장치)

  • Junghoon, Paik;Yongsuk, Kim
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.914-922
    • /
    • 2022
  • In this paper, we construct a commercial 4K UHD(Ultra High Definition) streaming device that utilizes a 5G mobile communication network as a transport channel and conduct a streaming performance test. It uses RTP(Realtime Transport Protocol) which has transmission quality monitoring capability as a transmission protocol to apply adaptive streaming. In addition, it provides the function to adjust the encoding rate of the video signal so that encoding can be optimized for the change in the bandwidth of the transmission channel. Through the performance test, it is confirmed that the H.265 encoding rate for 4K UHD signal is 48.69Mbps, the average glass-to-glass delay time is 293.60ms, and the average time difference between video and audio for lip sync is 120ms. With the result of performance test, it is shown that the streaming device is applied to 4K UHD Streaming device over 5G mobile communication network.

Implementation of Personalized IP Streaming System (맞춤형 IP 스트리밍 시스템 구현)

  • Yang, Chang-Mo;Kim, Kyung-Won;Lim, Tae-Beom;Kim, Yoon-Sang;Lee, Seok-Pil
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.515-517
    • /
    • 2006
  • Recently, there is a rapidly growing demand for efficient real-tine playback and transmission of large amounts of multimedia data. But most users' connections are not fast enough to download large chunks of multimedia data. Therefore a streaming technology is needed in which users enable the real-time playback of multimedia date without having to download the whole of the multimedia date. In this paper, we propose a personalized IP streaming system. The proposed IP streaming system enables users to got an intelligent recommendation of multimedia contents based on the user preference information stored on the streaming server or the home media server. Moreover, users are assured of seamless access of streamed content event if they switch to another client device by implementing streaming system based on user identification and device information. We evaluate our approach with simulation results.

  • PDF

Design and Implementation of Dynamic Streaming Server based on RTSP (RTSP 기반의 동적 스트리밍 서버의 설계 및 구현)

  • Yeon, Jae-Hyuk;Lim, Hyo-Taek;Park, Jae-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.407-410
    • /
    • 2010
  • This paper is to implement a RTSP based streaming server in order to provide streaming service. When a client requests a stream from a server, transmission speed is measured on a regular basis through communications between the client and the server. Server will send different encoded movie clip streams based on measured transmission speeds. Different streams are sent to a server depending on the transmission speed and their locations are saved when streams are sent. Even though different streams are sent, the streams will be sent without any interruptions because they are sent from their original locations.

  • PDF

The Design and Implementation of DELAY Module for Real-Time Broadcast Delay (실시간 방송 지연을 위한 DELAY 모듈의 설계 및 구현)

  • Ahn, Heuihak;Gu, Jayeong;Lee, Daesik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.45-53
    • /
    • 2019
  • Moving image sharing technology has developed various servers and programs for personal broadcasting. In this paper, we propose the method of transmitting the multiple moving image, including the output channel of external streaming server. It also implements and tests multiple real-time broadcast channel automatic transmission systems that assign multiple output channels to automatic output channels. As a result of the experiment, it is easy to allocate moving image to broadcast channels that are output through the external streaming server's output channels regardless of the size of the streaming server, enabling the management of efficient output channels at the time of transmission of multiple moving image. The moving image can be provided through streaming method regardless of the type of moving image from the moving image provider terminal, and the moving image transmission can be controlled in various ways, including adding and changing channels for which the moving image is sent, and sending delayed to the moving image.

Implementation of Adaptive Transmission Middleware for Video Streaming (비디오 스트리밍을 위한 적응적 전송 미들웨어의 구현)

  • 김영주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.637-644
    • /
    • 2004
  • This paper proposed and implemented the adaptive transmission middleware for video streaming, which is able to support the adaptive transmission of video data to the fluctuating changes of network environment in the packet-based network and the properties of transmitted video data. The adaptive transmission middleware is made up SR-RTP-based transfer module and TFRC(TCP Friendly Rate Control)-based transfer-rate control module. The SR-RTP-based transfer module supports RTP-based real-time transfer of video data and packet retransmission scheme retransmitting the high-priority packets selectively in the damaged video data to reduce the error induced by the packet loss. Sharing the transmission bandwidth of network with the TCP-based data transfer, the TFRC-based transfer-rate control module controls the transfer rate of video data according to the most allowable transmission bandwidth in the network, so that the transfer rate is controlled adaptively to the fluctuating changes of transmission bandwidth. This paper, for the experiment, applied the adaptive transmission middleware to video streaming in the external Internet environment, and analyzed the effective frame transfer rate and the degree of the streaming jitter to evaluate the performance of packet-loss recovery and adaptive transfer rate control. In the external Internet environment where the packet-loss rate is high a bit, the relatively high streaming performance was showed compared with the case that didn't apply the adaptive transmission middleware.

Cross-layer Design of Rate and Quality Adaptation Schemes for Wireless Video Streaming

  • Lee, Sun-Hun;Chung, Kwang-Sue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.324-340
    • /
    • 2010
  • Video streaming service over wireless networks is a challenging task because of the changes in the wireless channel conditions that can occur due to interference, fading, and station mobility. To provide an efficient wireless video streaming service, the rate adaptation scheme should improve wireless node performance and channel utilization. Moreover, the quality adaptation scheme should be considered at the streaming application. To meet these requirements, we propose a new cross-layer design for video streaming over wireless networks. This design includes the rate and quality adaptation schemes. The rate adaptation scheme selects the optimal transmission mode and resolves the performance anomaly problem. Based on performance improvement by the proposed rate adaptation scheme, our quality adaptation scheme improves the quality of video streaming. Through performance evaluations, we prove that our cross-layer design improves the wireless channel utilization and the quality of video streaming.

An Active Buffer Management Mechanism to Guarantee the Qos of the Streaming Service in IEEE 802.11e EDCA (IEEE 802.11e EDCA에서 스트리밍 서비스의 QoS 보장을 위한 동적버퍼관리 기술)

  • Lee, Kyu-Hwan;Lee, Hyun-Jin;Kim, Jae-Hyun;Roh, Byeong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8B
    • /
    • pp.751-759
    • /
    • 2009
  • Due to the advance of WLAN technology, the use of the multimedia service such as the video streaming service has been increased in the home network. However, we need to study the method which decreases the transmission delay and the frame loss rate to provide QoS of the video streaming service. Therefore, this paper proposes an active buffer management mechanism to guarantee QoS of the streaming service in IEEE 802.11e EDCA. The proposed protocol discards the frame in the HoL of the buffer based on the importance of each frame and the virtual transmission delay of frame newly arriving at the buffer. In the simulation results, the proposed algorithm not only decreases the frame loss probability of important I and P frames but also stabilizes the transmission delay. It may increase the QoS of video streaming services.