• Title/Summary/Keyword: Streaming Decision Tree

Search Result 4, Processing Time 0.019 seconds

Streaming Decision Tree for Continuity Data with Changed Pattern (패턴의 변화를 가지는 연속성 데이터를 위한 스트리밍 의사결정나무)

  • Yoon, Tae-Bok;Sim, Hak-Joon;Lee, Jee-Hyong;Choi, Young-Mee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.94-100
    • /
    • 2010
  • Data Mining is mainly used for pattern extracting and information discovery from collected data. However previous methods is difficult to reflect changing patterns with time. In this paper, we introduce Streaming Decision Tree(SDT) analyzing data with continuity, large scale, and changed patterns. SDT defines continuity data as blocks and extracts rules using a Decision Tree's learning method. The extracted rules are combined considering time of occurrence, frequency, and contradiction. In experiment, we applied time series data and confirmed resonable result.

Fast Decision Method of Adaptive Motion Vector Resolution (적응적 움직임 벡터 해상도 고속 결정 기법)

  • Park, Sang-hyo
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.305-312
    • /
    • 2020
  • As a demand for a new video coding standard having higher coding efficiency than the existing standards is growing, recently, MPEG and VCEG has been developing and standardizing the next-generation video coding project, named Versatile Video Coding (VVC). Many inter prediction techniques have been introduced to increase the coding efficiency, and among them, an adaptive motion vector resolution (AMVR) technique has contributed on increasing the efficiency of VVC. However, the best motion vector can only be determined by computing many rate-distortion costs, thereby increasing encoding complexity. It is necessary to reduce the complexity for real-time video broadcasting and streaming services, but it is yet an open research topic to reduce the complexity of AMVR. Therefore, in this paper, an efficient technique is proposed, which reduces the encoding complexity of AMVR. For that, the proposed method exploits a special VVC tree structure (i.e., multi-type tree structure) to accelerate the decision process of AMVR. Experiment results show that the proposed decision method reduces the encoding complexity of VVC test model by 10% with a negligible loss of coding efficiency.

Design of Machine Learning based Smart Service Abstraction Layer for Future Network Provisioning (미래 네트워크 제공을 위한 기계 학습 기반 스마트 서비스 추상화 계층 설계)

  • Vu, Duc Tiep;N., Gde Dharma;Kim, Kyungbaek;Choi, Deokjai
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.114-116
    • /
    • 2016
  • Recently, SDN and NFV technology have been developed actively and provide enormous flexibility of network provisioning. The future network services would generally involve many different types of services such as hologram games, social network live streaming videos and cloud-computing services, which have dynamic service requirements. To provision networks for future services dynamically and efficiently, SDN/NFV orchestrators must clearly understand the service requirements. Currently, network provisioning relies heavily on QoS parameters such as bandwidth, delay, jitter and throughput, and those parameters are necessary to describe the network requirements of a service. However it is often difficult for users to understand and use them proficiently. Therefore, in order to maintain interoperability and homogeneity, it is required to have a service abstraction layer between users and orchestrators. The service abstraction layer analyzes ambiguous user's requirements for the desired services, and this layer generates corresponding refined services requirements. In this paper, we present our initial effort to design a Smart Service Abstraction Layer (SmSAL) for future network architecture, which takes advantage of machine learning method to analyze ambiguous and abstracted user-friendly input parameters and generate corresponding network parameters of the desired service for better network provisioning. As an initial proof-of-concept implementation for providing viability of the proposed idea, we implemented SmSAL with a decision tree model created by learning process with previous service requests in order to generate network parameters related to various audio and video services, and showed that the parameters are generated successfully.

Development of a Model for Winner Prediction in TV Audition Program Using Machine Learning Method: Focusing on Program (머신러닝을 활용한 TV 오디션 프로그램의 우승자 예측 모형 개발: 프로듀스X 101 프로그램을 중심으로)

  • Gwak, Juyoung;Yoon, Hyun Shik
    • Knowledge Management Research
    • /
    • v.20 no.3
    • /
    • pp.155-171
    • /
    • 2019
  • In the entertainment industry which has great uncertainty, it is essential to predict public preference first. Thanks to various mass media channels such as cable TV and internet-based streaming services, the reality audition program has been getting big attention every day and it is being used as a new window to new entertainers' debut. This phenomenon means that it is changing from a closed selection process to an open selection process, which delegates selection rights to the public. This is characterized by the popularity of the public being reflected in the selection process. Therefore, this study aims to implement a machine learning model which predicts the winner of , which has recently been popular in South Korea. By doing so, this study is to extend the research method in the cultural industry and to suggest practical implications. We collected the data of winners from the 1st, 2nd, and 3rd seasons of the Produce 101 and implemented the predictive model through the machine learning method with the accumulated data. We tried to develop the best predictive model that can predict winners of by using four machine learning methods such as Random Forest, Decision Tree, Support Vector Machine (SVM), and Neural Network. This study found that the audience voting and the amount of internet news articles on each participant were the main variables for predicting the winner and extended the discussion by analyzing the precision of prediction.