• Title/Summary/Keyword: Streamflow level

Search Result 56, Processing Time 0.026 seconds

Open-channel discharges evaluation by the application of smart sensors

  • Khatatbeh, Arwa;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.138-138
    • /
    • 2022
  • Understanding a stream's or river's discharge is essential for a variety of hydrological and geomorphological applications at various sizes. However, depending on the stream environment and flow conditions, it is crucial to use the appropriate techniques and instruments. This will ensure that discharge estimations are as reliable as possible. This study presents developed smart system for continuous measurement of open channel discharge and evaluate streamflow measurement over various techniques. This includes developed smart flow meter as flow point measurements, smart water level sensor (installed on Hydraulic Structure ? Weir) and current meters. Advantages and disadvantages of each equipment are presented to ensure that the most appropriate method can be selected. we found that smart water level sensor is more prominent once used during flood event as compared to smart flow meter and current meters, while current meters seems to show better accuracy once applied for open channel.

  • PDF

Estimating Groundwater Level Change Associated with River Stage and Pumping using Time Series Analyses at a Riverbank Filtration Site in Korea

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Kim, Hyoung-Soo;Lee, Soo-Hyoung;Park, Heung-Jai
    • Journal of Environmental Science International
    • /
    • v.26 no.10
    • /
    • pp.1135-1146
    • /
    • 2017
  • At riverbank filtration sites, groundwater levels of alluvial aquifers near rivers are sensitive to variation in river discharge and pumping quantities. In this study, the groundwater level fluctuation, pumping quantity, and streamflow rate at the site of a riverbank filtration plant, which produces drinking water, in the lower Nakdong River basin, South Korea were interrelated. The relationship between drawdown ratio and river discharge was very strong with a correlation coefficient of 0.96, showing a greater drawdown ratio in the wet season than in the dry season. Autocorrelation and cross-correlation were carried out to characterize groundwater level fluctuation. Autoregressive model analysis of groundwater water level fluctuation led to efficient estimation and prediction of pumping for riverbank filtration in relation to river discharge rates, using simple inputs of river discharge and pumping data, without the need for numerical models that require data regarding several aquifer properties and hydrologic parameters.

Assessment of the Effect of Sand Dam on Groundwater Level: A Case Study in Chuncheon, South Korea

  • Yifru, Bisrat;Kim, Min-Gyu;Chang, Sun Woo;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.119-129
    • /
    • 2020
  • Sand dam is a successful water harvesting method in mountainous areas with ephemeral rivers. The success is dependent on several factors including material type, hydrogeology, slope, riverbed thickness, groundwater recharge, and streamflow. In this study, the effect of a sand dam on the groundwater level in the Chuncheon area, South Korea was assessed using the MODFLOW model. Using the model, multiple scenarios were tested to understand the groundwater head before and after the construction of the sand dam. The effect of groundwater abstraction before and after sand dam construction and the sand material type were also assessed. The results show, the groundwater level increases substantially after the application of a sand dam. The comparison of model outputs, simulated groundwater head before and after sand dam application with and without pumping well, shows a clear difference in the head. The material type has also an effect on the groundwater head. As the conductivity of the material increases, the head showed a significant rise.

Impacts of Seasonal Pumping on Stream Depletion (계절양수가 하천건천화에 미치는 영향)

  • Lee, Hyeonju;Koo, Min-Ho;Lim, Jinsil;Yoo, Byung-Ho;Kim, Yongcheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.61-71
    • /
    • 2016
  • Visual MODFLOW was used for quantifying stream-aquifer interactions caused by seasonal groundwater pumping. A hypothetical conceptual model was assumed to represent a stream-aquifer system commonly found in Korea. The model considered a two-layered aquifer with the upper alluvium and the lower bedrock and a stream showing seasonal water level fluctuations. Our results show that seasonal variation of the stream depletion rate (SDR) as well as the groundwater depletion depends on the stream depletion factor (SDF), which is determined by aquifer parameters and the distance from the pumping well to the stream. For pumping wells with large SDF, groundwater was considerably depleted for a long time of years and the streamflow decreased throughout the whole year. The impacts of return flow were also examined by recalculating SDR with an assumed ratio of immediate irrigation return flow to the stream. Return flow over 50% of pumping rate could increase the streamflow during the period of seasonal pumping. The model also showed that SDR was affected by both the conductance between the aquifer and the stream bed and screen depths of the pumping well. Our results can be used for preliminary assessment of water budget analysis aimed to plan an integrated management of water resources in riparian areas threatened by heavy pumping.

Sensitivity Analysis for Parameter of Rainfall-Runoff Model During High and Low Water Level Season on Ban River Basin (한강수계의 고수 및 저수기 유출모형 매개변수 민감도 분석)

  • Choo, Tai-Ho;Maeng, Seung-Jin;Ok, Chi-Youl;Song, Ki-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1334-1343
    • /
    • 2008
  • Growing needs for efficient management of water resources urge the joint operation of dams and integrated management of whole basin. As one of the tools for supporting above tasks, this study aims to constitute a hydrologic model that can simulate the streamflow discharges at some control points located both upper and down stream of dams. One of the currently available models is being studied to be applied with a least effort in order to support the ongoing project of KWATER (Korea Water Resources Corporation), "Establishment of integrated operation scheme for the dams in Han River Basin". On this study, following works have been carried out : division of Han River Basin into 24 sub-basins, use of rainfall data of 151 stations to make spatial distribution of rainfall, selection of control points such as Soyanggang Dam, Chungju Dam, Chungju Release Control Dam, Heongseong Dam, Hwachun Dam, Chuncheon Dam, Uiam Dam, Cheongpyung Dam and Paldang Dam, selection of SSARR (Streamflow Synthesis and Reservoir Regulation) model as a hydrologic model, preparation of input data of SSARR model, sensitivity analysis of parameter using hydrologic data of 2002. The sensitivity analysis showed that soil moisture index versus runoff percent (SMI-ROP), baseflow infiltration index versus baseflow percent (BII-BFP) and surface-subsurface separation (S-SS) parameters are higher sensitive parameters to the simulation result.

Improvement of Inflow Estimation Data by Precise Measurement of Water Level in Reservoir (저수지 수위 정밀 측정에 의한 댐 유입량 자료 개선)

  • Park, Ji-Chang;Kim, Nam;Ryoo, Kyong-Sik
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.309-314
    • /
    • 2009
  • A accurate reservoir inflow is very important as providing information for decision making about the water balance and the flood control, as well as for dam safety. The methods to calculate the inflow were divided by the directed method to measure streamflow from upstream reservoirs and the indirected method to estimate using the correlation of reservoir water level and release. Currently, the inflow of multi-purpose dam is being calculated by the indirect method and the reservoir water level to calculate the storage capacity is being used by centimeters(cm) units. Corresponding to the storage volume of 1cm according to scale and water level of multi-purpose dam comes up to from several 10 thousand tons to several million tons. If it converts to inflow during 1 hour, and it comes to several hundred $m^3/sec$(CMS). Therefore, the inflow calculated on the hourly is largely deviated along the water level changes and is occurred minus value as the case. In this research, the water level gage has been developed so that it can measure a accurate water level for the improvement for the error and derivation of inflow, even though there might be various hydrology and meteorologic considerations to analyse the water balance of reservoir. Also, it is confirmed that the error and the standard derivation of data observed by the new gage is decreased by 89,6% and 1/3 & 87% and 2/3 compared to that observed by the existing gage of Daecheong and Juam multi-purpose dam.

Analysis of Flood Level Variation in Oship Stream Using HEC-RAS: Focuses on the Impact of the Typhoon Sanba (HEC-RAS를 이용한 오십천의 수위변화 해석: 태풍산바의 영향을 중심으로)

  • Jun, Kye-Won
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.2
    • /
    • pp.498-504
    • /
    • 2013
  • Recently, the frequency of typhoons have increased due to the effects of climate change. As a result, in mountain streams, it has caused streamflow increase upstream and frequent water surface elevation downstream. This study analyzed the effects of the heavy rainfalls caused by Typhoon Sanba, which had a direct impact on Korea between September 17 and 18, on the water level variations downstream in mountainous streams. In addition, the drainage basin of Samcheok Oship stream was chosen as the object of this study. This study analyzed the flood level by applying HEC-RAS model. The observed water level measured in 2012 and the water level simulated by HEC-RAS model showed similar results. In addition, the simulation results showed the maximum flood level was 5.32m the mean flow velocity was 2.33m/sec and the maximum channel water depth was 7.51m. The analysis showed that the heavy rainfalls caused by Typhoon Sanba had an impact on the water surface elevation in Oship stream. The final results from this study will give a reasonable and important data to perform the Design of Hydraulic Structure.

Ensemble Forecasting of Summer Seasonal Streamflow Using Hydroclimatic Information (수문기상정보를 이용한 여름 유량의 Ensemble 예측)

  • Kwon, Hyun-Han;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1455-1459
    • /
    • 2006
  • 우리나라 수자원 관리에서 여름 유량은 이수 및 치수 측면에서 매우 중요한 역할을 한다. 이러한 점에서 여름유량의 예측 가능성을 검토하는 것은 수자원 관리에 유연성을 주는 동시에 상대적으로 위험도를 저감시킬 수 있는 역할을 할 수 있다. 따라서 본 연구의 목적은 여름 계절 유량을 대상으로 기상인자와의 상관성 분석을 통해 유량 예측을 위한 수문기상정보(hydroclimatics)를 전 지구적으로 검토하고 최종적으로 불확실성을 고려할 수 있는 Ensemble예측을 실시하고자 한다. Ensemble예측은 설정 가능한 입력 자료를 통하여 다수의 출력자료를 얻는 방법론으로서 불확실성이 큰 기상 및 수문기상자료 분석에 주로 이용되고 있다. 본 연구에서는 해수면온도(sea surface temperature), 해수면기압(sea level pressure)과 방출장파복사에너지(outgoing longwave radiation)를 주요 기상인자로 고려하였으며 예측모형으로서는 Cross Ensemble(out of bagging)방법에 근거한 Support Vector Machine 모형을 이용하였다. 분석결과 주요 기상인자와 50%이상의 상관관계를 보이고 있으며 다소 합리적인 예측 결과를 제시하여 주고 있어 수자원관리를 위한 보조수단으로 이용이 가능할 것으로 사료된다.

  • PDF

THE CORRELATION ANALYSIS BETWEEN SWAT PREDICTED SOIL MOISTURE AND MODIS NDVI

  • Hong, Woo-Yong;Park, Min-Ji;Park, Jong-Yoon;Kim, Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.204-207
    • /
    • 2008
  • The purpose of this study is to identify how much the MODIS NDVI (Normalized Difference Vegetation Index) can explain the soil moisture simulated from SWAT (Soil and Water Assessment Tool) continuous hydrological model. For the application, ChungjuDam watershed (6,661.3 $km^2$) was adopted which covers land uses of 82.2 % forest, 10.3 % paddy field, and 1.8 % upland crop respectively. For the preparation of spatial soil moisture distribution, the SWAT model was calibrated and verified at two locations (watershed outlet and Yeongwol water level gauging station) of the watershed using daily streamflow data of 7 years (2000-2006). The average Nash and Sutcliffe model efficiencies for the verification at two locations were 0.83 and 0.91 respectively. The 16 days spatial correlation between MODIS NDVI and SWAT soil moisture were evaluated especially during the NDVI increasing periods for forest areas.

  • PDF

Development of a Stream Discharge Estimation Program (자연하천 유량산정 프로그램 개발)

  • Lee Sang Jin;Hwang Man Ha;Lee Bae Sung;Ko Ick Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.27-38
    • /
    • 2006
  • In this study, we developed a program to estimate discharge efficiently considering major hydraulic characteristic including water level, river bed, water slope and roughness coefficient in a natural river. Stream discharge was measured at Gongju gauge station located in the down stream of the Daechung Dam during normal and dry seasons from 2003 to 2004. The developed model was compared with the results from the existing rating curve at T/M gage stations, and was used for runoff analyses. Evaluating the developed river discharge estimation program, it was applied during 1983-2004 that base flow separation method and RRFS (Rainfall Runoff Forecasting System) which is based on SSARR (Streamflow Synthesis And Resevoir Regulation). The result presents the stage-discharge curve creator range at the Gong-ju is overestimated by approximately $10-20\%$, especially at the low stage. It is attributed to the hydraulic characteristics at the study. The discharge simulated by the RRFS and base flow separation, which is calibrated using the measurement at the early spring and late fall season during relatively d]v season, shows the least errors. The coefficient of roughness at Gongju station varied with the high and low water level.