• Title/Summary/Keyword: Streamflow Variability

Search Result 32, Processing Time 0.015 seconds

Evaluation of conceptual rainfall-runoff models for different flow regimes and development of ensemble model (개념적 강우유출 모형의 유량구간별 적합성 평가 및 앙상블 모델 구축)

  • Yu, Jae-Ung;Park, Moon-Hyung;Kim, Jin-Guk;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.105-119
    • /
    • 2021
  • An increase in the frequency and intensity of both floods and droughts has been recently observed due to an increase in climate variability. Especially, land-use change associated with industrial structure and urbanization has led to an imbalance between water supply and demand, acting as a constraint in water resource management. Accurate rainfall-runoff analysis plays a critical role in evaluating water availability in the water budget analysis. This study aimed to explore various continuous rainfall-runoff models over the Soyanggang dam watershed. Moreover, the ensemble modeling framework combining multiple models was introduced to present scenarios on streamflow considering uncertainties. In the ensemble modeling framework, rainfall-runoff models with fewer parameters are generally preferred for effective regionalization. In this study, more than 40 continuous rainfall-runoff models were applied to the Soyanggang dam watershed, and nine rainfall-runoff models were primarily selected using different goodness-of-fit measures. This study confirmed that the ensemble model showed better performance than the individual model over different flow regimes.

A decision-centric impact assessment of operational performance of the Yongdam Dam, South Korea (용담댐 기존운영에 대한 의사결정중심 기후변화 영향 평가)

  • Kim, Daeha;Kim, Eunhee;Lee, Seung Cheol;Kim, Eunji;Shin, June
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.205-215
    • /
    • 2022
  • Amidst the global climate crisis, dam operation policies formulated under the stationary climate assumption could lead to unsatisfactory water management. In this work, we assessed status-quo performance of the Yongdam Dam in Korea under various climatic stresses in flood risk reduction and water supply reliability for 2021-2040. To this end, we employed a decision-centric framework equipped with a stochastic weather generator, a conceptual streamflow model, and a machine-learning reservoir operation rule. By imposing 294 climate perturbations to dam release simulations, we found that the current operation rule of the Yongdam dam could redundantly secure water storage, while inefficiently enhancing the supply reliability. On the other hand, flood risks were likely to increase substantially due to rising mean and variability of daily precipitation. Here, we argue that the current operation rules of the Yongdam Dam seem to be overly focused on securing water storage, and thus need to be adjusted to efficiently improve supply reliability and reduce flood risks in downstream areas.