• 제목/요약/키워드: Stream-water

검색결과 3,448건 처리시간 0.034초

평림천 어류군집에 관한 연구 - 평림댐 상·하류 수질 및 하천건강성평가와 함께 - (A Study on Fish Community in Pyeonglim Stream - with Water Quality and Stream Health Assessment in Up- and Downstream of Pyeonglim Dam -)

  • 서진원
    • 환경영향평가
    • /
    • 제18권3호
    • /
    • pp.151-160
    • /
    • 2009
  • In order to use fundamental data for conservation of species diversity and stream health with dam development, fish investigation in up- and downstream of Pyeonglim Dam was seasonally conducted in 2007~2008. In addition, data of water qualities, investigated for environmental impact assessment, were used to determine a water quality standard level in Pyeonglim Stream, and it revealed that water environment condition was good in the stream. During the study period, a total number of fish caught from the 4 study sites was 5,449 representing 9 families 25 species, and there were 8 Korean endemic species (32.0%) including Rhodeus uyekii, Squalidus gracilis majimae, and Microphysogobio yaluensis. Two species of Zacco temminckii (37.5%) and Zacco platypus (26.3%) were dominant and subdominant in all sites. There were few individuals of the $2^{nd}$-class endangered species (Sand lamprey, Lampetra reissneri) and the introduced species (Bluegill, Lepomis macrochirus), found in the upstream of the dam. and further investigation for conservation of the endangered species and for prevention of the introduced species is needed in future. With fish fauna and multi-metric health assessment model in each sampling attempt, index of biotic integrity(IBI) was evaluated and it resulted mostly in good(26~35) and excellent(36~40) condition in all sites. The results indicate that it is very important to study not only environmental impact assessment with fish composition but also stream health assessment in order to conserve healthy aquatic ecosystem.

인북천에서 부착조류 현존량의 시·공간적 변동 (The Spatial and Temporal Variation of Periphyton in the Inbuk Stream)

  • 이재용;자히둘 이슬람;신명선;정성민;김범철
    • 한국물환경학회지
    • /
    • 제26권1호
    • /
    • pp.104-110
    • /
    • 2010
  • Eutrophication is a well-known phenomenon in lentic habitats, however it is receiving increasing attention in shallow streams of Korea due to the increase of periphyton to a nuisance level. In this study temporal and spatial variation in periphyton standing crop and nutrient concentrations were surveyed in the upper reach of the Han River (the Inbuk Stream) that used to be a pristine rural stream until 1980s. Chlorophyll-a concentration per unit surface area of bottom substrate was examined monthly for one year period at nine sites along the Inbuk Stream together with environmental factors such as phosphorus, nitrogen, and water velocity. The standing crop of periphytic algae ranged from $4{\sim}242mgChl.a/m^2$ with a median of $55mgChl.a/m^2$, often exceeding the nuisance level criterion. Along the stream periphyton increased significantly from $39{\pm}48mgChl.a/m^2$ to $94{\pm}49mgChl.a/m^2$ after merging of a tributary in an intensive agricultural basin with high phosphorus concentrations. Seasonally periphyton biomass was highest in autumn (median $171{\pm}76mgChl.a/m^2$) from October through December when water flow velocity was low (median $0.4{\pm}0.3m/s$), while it was higher in flood season (median $1.2{\pm}0.4m/s$) and freezing season (median $0.2{\pm}0.3m/s$) was lower. The result shows that this rural stream often shows characteristics of eutrophication according to periphyton standing crop and it may be regulated by phosphorus and water velocity.

Effects of Wastewater Treatment Plants (WWTPs) on Downstream Water Quality and Their Comparisons with Upstream Water Quality in Major Korean Watersheds

  • Jang, Seong-Hui;Kim, Hyun-Mac;An, Kwang-Guk
    • 생태와환경
    • /
    • 제42권4호
    • /
    • pp.465-475
    • /
    • 2009
  • The purpose of the study was to evaluate spatial and temporal effects of wastewater treatment plants (WWTPs) on the water quality of downstreams (Tan Stream, TS; Daemyeong Stream, DS; Gwangju Stream, GS, and Kap Stream, KS) located in four major watersheds along with impact analysis of nutrient enrichments on the WWTPs during 2004~2008. In the four streams, seasonal means of BOD, COD, TN, and TP were significantly (p<0.01) greater in the downstreams ($D_s$) than the upstreams ($U_s$). The removal effect of nutrients (nitrogen, and phosphorus) from the WWTPs was much less than the BOD, indicating a greater nutrient impact on the downstreams. Seasonal dilution of organic matter, based on BOD, during the summer monsoon of July~September was most pronounced in the downstreams of all four watersheds. However, mean TN in the downstreams during the monsoon varied little in all four streams. Regression analysis of TN in the downstreams against TN from the WWTPs showed that in the TS, and DS regression slopes in the upstreams were similar to the slopes of downstream but there was a significant difference in the GS (p<0.001) and KS (p<0.01). Tan-Stream WWTP showed low removal efficiency of BOD and COD concentrations, compared to the nutrients, whereas, two WWTPs of Gwangju and Kap Stream had low removal effects in TN and TP. Regression analysis of TN and BOD in the downstreams showed that they was closely related (p<0.01) with stream water volume only in the GS. Our data analysis suggests that greater treatment efficiencies of phosphorus and nitrogen from the WWTPs may improve the downstream water quality.

만곡하천의 자갈하상재료 분포에 따른 한계수류력 평가 (Estimating Critical Stream Power by the Distribution of Gravel-bed Materials in the Meandering River)

  • 신승숙;박상덕;이승규;지민규
    • 한국수자원학회논문집
    • /
    • 제45권2호
    • /
    • pp.151-163
    • /
    • 2012
  • 산지하천의 자갈하상재료 분포는 최근 특정규모 홍수의 수류력에 의한 유사 이송 및 퇴적 과정에 의해 형성되며, 장갑화된 하천에서 한계수류력을 평가하는 것은 안정하도설계를 위해 중요하다. 자갈하상 하천 종단지점과 만곡부 일정구간의 세부지점에대한하상재료의입도분포를조사하고, 한계유속 및 한계수류력을 평가하였다. 자갈하상 재료에 대한 Yang의 한계단위수류력과 Bagnold의 한계수류력은 상류로 갈수록 급격히 증가했다. 계획홍수량에 근거한 무차원 전단응력은 Shields 도표에서대부분조사지점의자갈하상재료가소류사형태로이동하는것으로평가되었다. 만곡부에 대한 평균입경은 상류 유입수의 1차 수충지점에서 가장 컸으며, 반사흐름에 의한 2차 수충지점에서 두 번째로 큰 입경을 보였다. 수충직하류지점들에서상대적으로작은평균입경을보였다. 만곡부의 평균한계유속 범위는0.77~2.60m/s의 범위이며, 한계단위수류력은 경사가 급한 1차 수충부에서는 상당히 컸다. 한계수류력의 분포는 7~171W/m2의 범위로 하천 횡단보다는 종단에 따른 변화가 뚜렷했고, 만곡 외측 1차 수충지점과 반사흐름 2차 수충지점에서 크게 작용하는 것으로 평가되었다.

하수처리수의 재이용을 위한 처리습지 및 도시 상류하천 생태환경복원 - 공주시 제민천 생태적수질정화비오톱을 중심으로 - (An Ecological Restoration of Treatment Wetland and Urban Upper Stream for Reusing Sewage Treatment Water - In the case of Sustainable Structured Wetland Biotop System at Upper Part of Jaemin Stream in Gongju-si, Korea -)

  • 변찬우
    • 한국환경복원기술학회지
    • /
    • 제17권5호
    • /
    • pp.65-77
    • /
    • 2014
  • The ecosystem of Jaemin stream, flowing into the center of Gongju-si, had been damaged by low water quality and lack of water quantity of the steam. However, after applying the SSB (Sustainable Structured wetland Biotop) system to the flood plain and the upstream of Jaemin stream, the efficiency of ecological water purification and ecological restoration are as follows. Through the constant maintenance and monitoring from year 2009 to year 2013 after restorative design and construction the average influent concentration of BOD5 was 4.2 mg/L, and the average effluent concentration was 1.8 mg/L, reaching ecological water purification rate of 57%. As for the T-N, the average influent concentration was 9.983 mg/L, and the average effluent concentration was 6.303 mg/L, showing the rate of 37%. For the T-P, the average influent concentration was 0.198 mg/L, and the average effluent concentration was 0.098 mg/L, being the rate of 51%. The vegetation of Jaemin stream monitored for 2 years after the restoration was composed of 51 species in 28 families which show high ratio of planted native species. As for the animals in the site, 5 species in 3 families of reptiles and amphibians, 34 species of 23 families of birds, and 3 species in 2 families of mammals were monitored, indicating that the bio-diversity of the site has improved, as well.

토지이용이 농업소유역의 수질에 미치는 영향 (Effect of Land Use on the Water Quality of Small Agricultural Watersheds in Kangwon-do)

  • 최중대;이찬만;최예환
    • 한국수자원학회논문집
    • /
    • 제32권4호
    • /
    • pp.501-510
    • /
    • 1999
  • 북한강 수계의 농업소유역에 대하여 하천수(2년)와 지하수(1년) 수질을 모니터링하여 분석하였다. 농업소유역의 주요한 비점원 오염물질인 총질소, 질산성 질소, 총인, BOD, TSS 및 대장균 농도를 주기적으로 측정하였다. 계절에 따른 수질의 변화 및 지하수와 하천수 수질과의 관계 비교를 통하여 토지이용이 수질에 미치는 영향을 분석하였다. 연구유역의 지하수 수위와 총질소, 질산성 질소의 농도의 벼농사와 밀접한 관련이 있었고 지하수와 하천수의 질소농도의 변화도 밀접한 관련이 있음이 나타나 벼농사가 하천의 질소농도에 많은영향을 주는 것으로 나타났다. 그러나 토지이용(벼농사)과 지하수 및 하천수의 총인, BOD, 대장균 농도 사이에는 일정한 관계를 발견할 수 없었다. 본 연구결과는 농업소유역의 수질변화를 이해하고 소하천의 수질관리정책을 개발하는데 유용하게 활용될 수 있을 것이다.

  • PDF

낙동강, 서낙동강, 수영천 하구의 하상구조에 따른 연중 퇴적저토의 오염특성 연구와 부산근해 적조에의 영향에 관한 연구 (A Study on the Relation between Riverbed Structure and Pollutant Concentration in Down Stream of Nakdong River)

  • 황선출;이봉헌
    • 한국환경과학회지
    • /
    • 제6권5호
    • /
    • pp.513-520
    • /
    • 1997
  • This study was performed to investigate the riverbed structure and the pollution type in Nakdong River, Western Nakdong River. and Suyoung Stream. Sediment and water samples were collected at is in Nakdong River. in Western Nakdong River, and 8 states In Suyoung Stream from February 20, 1997 to June 15, 1997. The depth distributions of sampling sites in the three streams were measured and heavy metals(Cd, Pb, Cr, Cu) and pesticides in sediments and COD, BOD, and total nitrogen(T-N) in water samples were analysed. The deepest and the shallowest sites were strate 11(11.58m) and 9(3.35m) in Nakdong River, site 7(6.25m) and 4(2.06m) in Western Nakdong River, and site 8(2.89m) and 1(0. 61m) in Suyoung Stream , respectively. The mean concentration of Cd(45.79ppm) was higher In the sediment of Western Nakdong River than In other two streams and those of Pb(76.25ppm), Cr(48.13ppm), and Cu(77.50ppm) were higher in file sediment of Suyoung Stream than in other two streams. Pesticides(1 kind of organophosphorus and 3 kinds of organochlorine pesticide) were detected only in the sediment of Western Nakdong River. The mean concentrations of COD(20.26ppm), BOD(25.36ppm), and T-N(18.05ppm) were higher in the water sample of Suyoung Stream than In other two streams.

  • PDF

京安川 流域의 土地利用에 따른 河川物質의 變化 (Changes in Stream Water Quality According to Land Use at Kyong-an Stream)

  • Yim, Yang-Jai;Bang, Je-Yong;Kim, Yoon-Dong
    • The Korean Journal of Ecology
    • /
    • 제18권3호
    • /
    • pp.341-351
    • /
    • 1995
  • The relationship between land uses and water quality was investigated at Kyong-an Stream. Some 70% of this watershed was forested area, half of which was comprised of Pinus densilflora community. Concentrations of $NH_4^{+},\;NO_3^{-},\;NO_2^{-}, total nitrogen, $Cl^{-},\;PO_4^{3-}$, DO, and BOD increased gradually from upstream to downstream, whereas heavy metals did not have such tendancy with the exception of a few sites. Urban area was significantly correlated with hardness and chloride concentration. Relationship among phosphate concentration(P), cultivated field area(F), and stream length(S) in each basin was P = 1.7912 F/S+0.0103. the concentration of $NH_4^{+}$ was positively correlated with the population size and cow density within the catchment. The effect of urban area(U) and stream length of the pH(pH) was represented by pH = -4.7344 U/S+6.52. It can be concluded that the control of nonpoint source pollution as well as point source pollution is one of the important problems of water quality management, especially geological properties must be considered for sustainable development.

  • PDF

유출량(流出量)의 변화(變化)가 산지(山地) 계류수(溪流水)의 수질변화(水質變化)에 미치는 영향(影響) - 팔공산유역(八空山流域)을 대상(對象)으로 - (Variations of Stream Water Quality Caused by Discharge Change - At a Watershed in Mt. Palgong -)

  • 박재철;이헌호
    • 한국산림과학회지
    • /
    • 제89권3호
    • /
    • pp.342-355
    • /
    • 2000
  • 본 연구는 물순환모델을 이용하여 계류수의 유출성분을 직접유출과 기저유출로 분리한 각각의 유출성분과 계류수질의 장 단기 수질 관측을 통해 얻어진 pH, EC 및 용존이온들과의 관계를 파악하여 유출량의 변화가 물질수지 및 계류수질에 미치는 영향을 밝히기 위하여 실시하였다. 팔공산 수문관측유역에서 1998년 1월부터 1999년 9월까지 관측한 수문 및 수질자료를 대상으로 유출량과 수질변화 특성과의 관계를 분석한 결과는 다음과 같다. 1. 계류수의 연평균 pH는 1998년에 6.48(6.22~6.89)로, 1999년에 6.52(5.75~7.18)로 나타나 대체로 일정한 값을 유지하고 있었으며, 시험유역에서 간벌이 실시된 이후 4개월 동안은 계속해서 pH가 낮아져 간벌이 영향을 미친 것으로 나타났다. 2. 계류수의 연평균 EC는 1998년에 $26.69(17.95{\sim}33.5){\mu}S/cm$로, 1999년에 $25.19(17.5{\sim}33.8){\mu}S/cm$로 나타나 시험유역에서 연중 일정한 값을 나타내었다. 3. 강우와 계류수의 평균 용존 물질량을 비교한 결과, 분석된 이온들 중 $K^+$를 제외한 나머지 이온 $Na^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, $NO_3{^-}$, $SO_4{^{2-}}$는 모두 마이너스 수지를 나타냈다. 그리고, 계류수의 용존원소 가운데 양이온은 $Na^+$가 가장 농도가 높았으며, 음이온은 $NO_3{^-}$가 가장 많이 검출되었다. 4. 단위강우로부터 발생한 계류수 pH의 경시변화를 분석한 결과, 유량이 증가하면 pH가 낮아지다가 첨두유량을 전환점으로 해서 유출량이 감소하면 다시 pH가 높아지는 것으로 나타났다. 5. 계류수 EC의 경시변화를 분석한 결과, 강우초기의 유량증가시에는 EC값이 감소하지만 첨두유량을 전후로 해서 유량의 증감에 따라 EC값이 함께 변화하는 것으로 나타났다. 6. 계류수의 $Na^+$, $K^+$, $Ca^{2+}$, 양이온총량, $Cl^-$$SO_4{^{2-}}$는 유출량이 증가하면 농도가 낮아지지만, 유출량이 감소하면 농도가 높아지는 경향을 나타내었으며, $NO_3{^-}$와 음이온총량은 그 반대의 경향을 나타내었다. 그리고, $Mg^{2+}$는 뚜렷한 경향이 나타나지 않았다. 7. 물순환모델에 의해 분리된 직접유출, 기저유출 및 총유출 성분 중 pH, EC 그리고 양이온 및 음이온 농도에 가장 큰 영향을 미치는 유출성분은 기저유출로 나타났다.

  • PDF

도시 하천에서의 어류 폐사 원인 분석 I - 일반조사 및 실험 (Causes of Fish Kill in the Urban Streams I - Field Surveys and Laboratory Experiments)

  • 이은형;서동일;황현동;윤진혁;최재훈
    • 상하수도학회지
    • /
    • 제20권4호
    • /
    • pp.573-584
    • /
    • 2006
  • This study was carried out to investigate the causes of fish kills in the Yudeung Stream in Daejeon, Korea using literature reviews, governmental and our water quality monitoring data of the study site, rainfall data, intensive water quality monitoring during rainfall events, sediment pollutant contents and laboratory bioassay tests. Fish kill in urban streams can be caused by combined effect of reduction in dissolved oxygen concentration, increase in toxic material or increase in turbidity in waterbody due to introduction of surface runoff or effluent of combined sewer overflows after rainfall from the watershed areas. Despite of extensive and intensive field surveys and laboratory tests, it was found that those conventional methods have limitations to identify causes of fish kills in urban streams. It would be necessary to use dynamic water quality modeling to predetermine the range and level of water pollution in the stream and automatic water quality monitoring system that can collect water samples and detect water quality continuously.