• Title/Summary/Keyword: Stream purification

Search Result 110, Processing Time 0.025 seconds

A Study on the Equipment Type of Stream Purification System that Applies Combined Physicochemical and Biological Treatment (물리·화학적 및 생물학적 처리가 결합된 장치형 하천정화 시스템에 관한 연구)

  • Eom, Han Ki;Kim, Sung Chul;Kim, Sung Su;Kim, Sam Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.273-281
    • /
    • 2017
  • The objective of this study is to evaluate the performance of stream purification equipment system combined MBP (Micro Bubble Process) and AGBP (Aerobic Granular Biofilm Process). Based on results, the optimal HRT (Hydraulic Retention Time) of MBP and AGBP set as 0.72 and 2.4 h, respectively. In the results of continuous operation on combined MBP and AGBP, it is possible to achieve a BOD, TSS and T-P removal efficiency of 85, 90 and 94%, respectively. It also confirmed that the water quality of the stream can be purified with increasing circulation flow through water simulation evaluation applied the QUAL-NIER model. Consequently this purification system can resolve the stream purification and dry stream problem.

Purification of Stream Water Quality by Using Rope Media Filter (끈상접촉산화시설을 이용한 하천수질정화)

  • Jung, Yong-Jun;Lim, Ki-Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.238-243
    • /
    • 2006
  • In order to improve the water quality of stream water, the facilities equipped with rope media filter have been examined as a part of national projects. This work may provide design and operating parameters from 2 years monitoring for 2 streams. Depending on the characteristics of streams, the flow rate into the facilities were shown different, where K stream was almost the same and D stream was less than 25% of design flow rate. Although the clogging of filter media was not observed during the operation, the removal of accumulated sludges was required for the stable operation. The removal efficiencies of BOD, SS, T-N and T-P for D stream were 60.5%, 80.1%, 25.2% and 36.2%, respectively. The most important factor for the construction of stream water purification facilities was recommended for the selection of proper sites.

A Study on the Water Pollution Characteristics of the Taewha River - Chemical Oxygen Demand and Chloride ion Concentration - (태화강의 수질오염 특성에 관한 연구 - 화학적 산소요구량과 염소이온 농도 -)

  • 류석환
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.291-297
    • /
    • 1993
  • The COD values and chloride ion concentrations of the Taewha river flowing through Ulsan area were determined along the main stream and the relationships between CODs and chloride ion concentrations were described. The results showed that the middle-upper stream and downstream of the Taewha river were polluted deeply with municipal sewage and self-purification occured in the middle-downstream of the river. When domestic sewage is a main source of pollutants, and is especially the only source of chloride in the stream water, the ratio of COD/[$\textrm{Cl}^{-}$] will be utilizable as a measure of self-purification of the stream.

  • PDF

Environmental Characteristics and Nature-friendly Planning Strategies for an Urban Stream - The Case of Chuncheon's Gongji Stream - (도시하천의 환경특성과 친자연적 계획전략 - 춘천시 공지천을 대상으로 -)

  • Jo Hyun-Kil;Ahn Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.3 s.116
    • /
    • pp.1-11
    • /
    • 2006
  • This study analyzed characteristics of natural and human environments in Chuncheon's Gongji stream, and suggested nature-friendly planning strategies for self-purification of water quality, biodiversity improvement and conservative waterfront recreation. The environmental analysis included streambed structures, floodplain soils, water quality, vegetation, wildlife, and human facilities. Natural colonization of vegetation for the middle section of the study stream was obstructed by a straightened concrete revetment of baseflow channel, and vehicle movement and concrete parking lots across the floodplain. These human disturbances also deteriorated the naturalness of the stream landscape and limited habitation of bird species. However, natural sedimented wetlands in half of the channel width for the lower section of the stream contributed to a desirable vegetational landscape and greater bird occurrence. Based on BOD measurements, water quality of the stream fell under class $II{\sim}III$ of the stream water-quality standard, but it was worse around sewage outlets due to incomplete sewage collection especially during the dry season. Dominant fish species included typical inhabitants of good water-quality streams that are tolerant of adverse habitat changes. Nature-friendly planning strategies were established based on analysis of the environmental characteristics. They focused on not merely spatial zoning and layout divided into four zones - preservation, partial preservation, conservation and use -, but close-to-nature channel revetment techniques, natural water-purification facilities, biotope diversification, and water-friendly recreation and circulation. Strategies pursued both renewal of stream naturalness and hydraulic stability of streamflow by minimizing transformation of natural channel micro-topography and biotope, and by reflecting natural traces of streambed structures such as revetment scour and sedimentation.

An Ecological Restoration of Treatment Wetland and Urban Upper Stream for Reusing Sewage Treatment Water - In the case of Sustainable Structured Wetland Biotop System at Upper Part of Jaemin Stream in Gongju-si, Korea - (하수처리수의 재이용을 위한 처리습지 및 도시 상류하천 생태환경복원 - 공주시 제민천 생태적수질정화비오톱을 중심으로 -)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.5
    • /
    • pp.65-77
    • /
    • 2014
  • The ecosystem of Jaemin stream, flowing into the center of Gongju-si, had been damaged by low water quality and lack of water quantity of the steam. However, after applying the SSB (Sustainable Structured wetland Biotop) system to the flood plain and the upstream of Jaemin stream, the efficiency of ecological water purification and ecological restoration are as follows. Through the constant maintenance and monitoring from year 2009 to year 2013 after restorative design and construction the average influent concentration of BOD5 was 4.2 mg/L, and the average effluent concentration was 1.8 mg/L, reaching ecological water purification rate of 57%. As for the T-N, the average influent concentration was 9.983 mg/L, and the average effluent concentration was 6.303 mg/L, showing the rate of 37%. For the T-P, the average influent concentration was 0.198 mg/L, and the average effluent concentration was 0.098 mg/L, being the rate of 51%. The vegetation of Jaemin stream monitored for 2 years after the restoration was composed of 51 species in 28 families which show high ratio of planted native species. As for the animals in the site, 5 species in 3 families of reptiles and amphibians, 34 species of 23 families of birds, and 3 species in 2 families of mammals were monitored, indicating that the bio-diversity of the site has improved, as well.

SEPARATION AND PURIFICATION PROCESS OF DEMO PLANT FOR 10TON PER DAY DME PRODUCTION (일일 10톤 DME 생산 Demo Plant에서의 분리정제 공정)

  • Ra Young Jin;Cho Wonihl;Shin Dong Geun;Lim Gye Gue
    • 한국가스학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.141-145
    • /
    • 2005
  • DME (Di-Methyl Ether) is a new clean fuel and an environmental-friendly energy resource, also is recently increasing with an alternative interest because of the industrial use. DME has been shown to have excellent properties as a diesel fuel giving emission level better than ULEV standard. So it has been attracting considerable as an alternative diesel fuel. In this study, we carried out simulation of separation and purification process of demo plant for 101on per day DME production, which cause the effect that is important in productivity, from operation results of pilot plant for 50kg per day DME production. The liquefied stream, which was separated by gas-liquid separator after DME reactor, includes $CO_2$, DME, Methanol and $H_2O$. We established three distillation columns for separation and purification of the stream. $CO_2$ was extracted from the stream by first distillation column, DME was extracted by second column and Methanol was extracted by third column. We investigated and analyzed the effect which the actual operation variables cause in efficiency of process and optimized process, finally we got the DME of purity $100\%$.

  • PDF

Determination of self-purification constants and regulation of pollutants loaded in the ecosystems (生態系에 있어서 自淨係數의 測定과 汚染負荷量의 調節 原理)

  • Chang, Nam-Kee;Kim, Jae-Young
    • The Korean Journal of Ecology
    • /
    • v.15 no.3
    • /
    • pp.287-296
    • /
    • 1992
  • To determinate self-purification constants of pollutants loaded in the ecosystems, the self- purification process was formulated, and a measurement method of the self-purification constants was derived. $C=C_0e^{-st}$ When $C_0$ is the initial pollutant amounts loaded in a ecosystem, and C is the rest pollutant amounts after the time, t, the equation of the self-purification, s, is $s=\frac{P}{C}$ When in aquatic ecosystem, $C_0$ is the initial polluant amounts loaded in water body, and Cis the rest pollutation amounts after the time, t, the self-purification constant, s, is $s=(\frac{\ln C_0-\ln C}{t}$ Self-purification constants of pine and oak forests at kwangneung in kyonggido were 0.07 and 10 respectively, of BOD in gokneung stream in kyonggido was 0.51, and of glucose and phosphate in pools on the stone in mt.jiri were 0.49 and 15.19 respectively.

  • PDF

The Purification Capacity of Zizania latifolia on Wetlands of Munpyeong Stream

  • Kim, Ha-Song;Ihm, Byung-Sun
    • The Korean Journal of Ecology
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2002
  • This study examined the changes of water quality in relation to distribution of hydrophytes, and the purification capacity of Zizania latifolia to improve the effluent from Munpyeong stream from March 1997 to December 1999. While the concentration of nitrogen and phosphorous in water were increased during the farming season, those decreased, during the streaming down to paddy and drainage areas. In investigated sites, the Z. latifolia was dominant community according to the development of the natural wetlands. Furthermore, it formed a large community owing to its high adaptability to environmental changes in the agriculture lands. In September, the leaves productivity of the Z. latifolia were 4,032g D.W/$m^2$and roots were 7,680gD.W/$m^2$. The purification capacity of the Z. latifolia for NH$_3$-N, $No_3$-N, and PO$_4$-P were 13.41, 17.07, and 4.58 respectively during 5 days. The results suggested that it needs to establish wetlands vegetated by hydrophytes to improve the water quality of the effluent from agricultural lands.

A Study on the Planning Elements for Ecological Restoration of Urban Stream through Present Condition Analysis - focused on the Yeocheon and the Mugeo stream - (현황분석을 통한 도시 소하천의 생태하천 계획요소에 관한 연구 -울산광역시 무거.여천천을 중심으로-)

  • Kim, Seong Cheol;Lee, Cheol Yeong
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.747-757
    • /
    • 2004
  • The objectives of this study were to investigate the physical, chemical, and structural characteristics of the stream, especially Mugeo and Yeochon which are being changed to ecological stream by Ulsan city, and to acquire the considerations such as the planning element and plan criteria of the streams for making ecological stream system. Water quality, water quantity, vegetation, in stream structures and facilities, and land usage of the streams were investigated and the build up capabilities of ecological stream for the two streams were also analyzed. Planning elements for restoration to ecological stream included physical and biological purification methods in water quality, short term water acquire alternatives in water quantity, and vegetation recovery plan and improvement of habitation environment in ecological system, respectively. Planing elements in physical structures and facilities also included recovery of concrete levee and removal and recovery of covered channel.

Development of the Close-to-Nature Construction Technology for the Low-Flow Revetment of the Stream -A Case of Junpyung Stream in Yongin City- (하천 저수로 호안의 친환경적 조성기법의 개발 -용인시 수지읍 정평천을 중심으로-)

  • 심우경;백경종
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.1
    • /
    • pp.83-91
    • /
    • 2000
  • This study was carried out to develop the close-to nature construction technology for the stream which has been improved just for the flood control with artificially straightened and concrete covered, losing the various functions of the stream such as wild-life habitat, polluted water purification and waterscape. Jungpyung stream in youngin City, Kyunggi Province was selected as a case study site. The results were as follows; 1. Existing stream improvement planning could accept the close-to-nature techniques of the low-flow revetment, keeping the capability of flood control and water use. 2. The low-flow revetment was planned and executed to the bottom of the stream without damaging the existing bank, and the slope of the low-flow revetment was adjusted as 1:1.2∼1.5. Consequently it would not disturb the water flow when the flood occurred and it would keep the constant water flow even at the drought with providing a stable ecosystem and water purification. 3. Low-flow revetement was planted with Salix species and perennials naturally, and it would be a precious biotope for the diverse floras and faunas. 4. Some furnitures such as stepping stone bridge, wooden bridge and step were installed to the suitable locations for the convenience of users, and it will be ot only the sound stream environment but also easy access to the waterscape. 5. This case study site will be monitored for 3 years systematically after the construction was finished in September, 1999 to get the exact results for the scientific approvement

  • PDF