• Title/Summary/Keyword: Stream Slope

Search Result 349, Processing Time 0.022 seconds

High-Altitude Environment Simulation of Space Launch Vehicle in a Ground-Test Facility (지상시험장비를 통한 우주발사체 고공환경모사 기법 연구)

  • Lee, Sungmin;Oh, Bum-Seok;Kim, YoungJun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.914-921
    • /
    • 2017
  • The experimental research on a high-altitude environment simulation of space launch vehicle is important for securing independent technologies with launching space vehicles and completing missions. This study selected an altitude of 65 km for the experiment environment where it exceeded Mach number of 6 after the launch of Korean Space Launch Vehicle(KSLV-II). Shock tunnel was used to replicate the flight condition. After flow establishment, in order to confirm aerodynamic characteristics and normal and oblique shockwaves, the flow verification was carried out by measuring stagnation pressure and heat flux of a forebody model, and shockwave stand-off distance of a hemispherical model. In addition, a shock-free technique to recover free-stream condition has been developed and verified. From the results of the three verification tests, it was confirmed that the flow was replicated with the error of about ${\pm}3%$. The error between the slope angle of inclined shockwave of the scaled down transition section model using the shock-free shape and the slope angle of the horizontal plate model, and between the theoretical and the experimental value of the static pressure of the model were confirmed to be 2% and 1%, respectively. As a result, the efficiency of the shockwave cancellation technique has been verified.

Analysis of Effect of Ditch Restoration on Soil Loss Reduction in Highland Agricultural Fields (고랭지밭의 구거복원에 따른 토양유실저감 효과분석)

  • Sung, Yunsoo;Kim, Dong Jin;Lee, Suin;Ryu, Jichul;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki Sung
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.385-391
    • /
    • 2020
  • Soil loss is a serious problem frequently caused by local torrential rainfalls due to climate change. In particular, soil loss is occurring in agricultural areas rather than urban areas, and many pollutants are introduced into rivers, causing environmental problems. To reduce soil loss, the Ministry of Environment has designated and managed non-point source management areas. The Jaun-district in Hongcheon-gun, which was designed as a non-point pollution source management area in Gangwon-do, is located in the upper stream of Soyang Lake. Most of the agricultural fields are composed of highland agriculture fields. The highland agricultural fields in the Jaun-district are also composed of large-scale farming areas, and the ditches located near the agricultural fields have been illegally used for farmland. Therefore, the local government in Hongcheon-gun is conducting a project to restore the ditches occupied by agricultural fields. However, an analysis of the amount of soil loss that can be reduced by the restoration of the ditches has not been conducted yet. Thus, the purpose of this study was to analyze the effect of reducing the soil loss from the restoration of the ditches used as agricultural fields in the Jaun-district. The SATEEC L Module was used to analyze the reduction in soil loss by ditch restoration. The SATEEC L Module was constructed to estimate the LS factor using Moore and Burch's method after calculating the slope length using the digital elevation model and the maximum allowable slope length. The LS factor and the USLE formula were used to estimate the amount of soil loss that could be reduced by ditch restoration. The analysis showed that the ditch restoration could reduce about 16.6% of the soil loss in the Jaun-district. The results of this study will contribute to the study of methods to reduce soil loss in non-point pollution management areas.

A new natural habitat of Abeliophyllum distichum Nakai (미선나무(Abeliophyllum distichum Nakai)의 새로운 자생지 보고)

  • Kim, Dong-Kap;Kim, Joo-Hwan
    • Korean Journal of Plant Taxonomy
    • /
    • v.38 no.4
    • /
    • pp.573-582
    • /
    • 2008
  • We report a newly found natural habitat of Abeliophyllum distichum in mountainous slope range of Yeongdong-gun, Chungbuk Province. Abeliophyllum distichum Nakai is one of the Korean monotypic endemic species. Natural growth habitats of this species have been recorded from seven sites up to now, and all of the natural habitats are located in middle (Chungbuk Prov.) and middle west (Jeonbuk Prov.) parts of South Korea. Among the previously recorded seven natural habitats, six sites have been designated as Korean national monuments and protected with in situ conservation. New natural habitat of A. distichum is located on northwest slope of stiff hillock area beside the small stream, Seolgye-ri, Yeongdong-eup, Yeongdong-gun, Chungbuk Province. Total growing area is nearly $3,000 m^2$. It is 10-25 cm in soil depth and pH 5.0-6.5 in soil acidity in that area. And many of A. distichum are clustered with 2-5 individuals extended by stoloniferous asexual reproduction. And the total numbers of A. distichum are about 700 individuals with only typical white flowers, and the ratio between pin type and thrum type is 37% and 63%, respectively. The huge population of A. distichum is growing with Quercus mongolica-Fraxinus rhynchophylla association in a mixed forest, and it shows high affinity with Stephanandra incisa, Ligustrum obtusifolium, Euonymus alatus for. ciliatodentatus, and Smilax sieboldi.

Location Analysis and Distributional Forecast of Prehistoric Sites in Ulsan Region Using GIS (GIS를 이용한 울산지역 선사유적 입지분석 및 분포예측)

  • Lee, Han-Dong;Kim, Gyo-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.23-35
    • /
    • 2012
  • The optimum location of the prehistoric sites of Ulsan Metropolitan City are investigated by both quantile and natural breaks methods through GIS, and the settlement pattern is studied based on the possibility of presence of the prehistoric sites which are also analyzed with these methods. Such factors including elevation, slope, distance from the nearest water, aspect, geological features, soil drainage classes, subsoil and land use recommended are employed in the analysis. The optimum geographical environment is the place where it includes the water-base in the area that is the southern aspect of the gentle slope land of lowland. The geology is the Quaternary alluvium. The drainage class is fine and the deep soil saturn is the fine loamy soil and the recommendation of land use is the area that is the field. As a result of the forecast of distribution, the prehistoric sites showed the higher possibility of presence in the downstream region where the Taehwa river and Dongcheon river join because the region come close to the watercourse and the drinking water use is easy. And the aspect and elevation is the low area. The alluvium accumulated from the upper stream of the Taehwa river and Dongheon river was made roomily, the area where is suitable for the farming life. Therefore, this region is judged that the possibility of presence of the prehistoric sites is high.

Generation Characteristics and Prediction of Acid Rock Drainage(ARD) of Cut Slopes (건설현장 절취사면의 산성암반배수 발생특성과 잠재적 산발생능력 평가)

  • Lee, Gyoo-Ho;Kim, Jae-Gon;Lee, Jin-Soo;Chon, Chul-Min;Park, Sam-Gyu;Kim, Tack-Hyun;Ko, Kyung-Seok;Kim, Tong-Kwon
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.91-99
    • /
    • 2005
  • Acid Rock Drainage(ARD) is the product formed by the atmospheric(i.e. by water, oxygen and carbon dioxide) oxidation of the relatively common iron-sulphur mineral pyrite($FeS_2$). ARD causes the acidification and heavy metal contamination of water and soil and the reduction of slope stability. In this paper the generation characteristics and the prediction of ARD of various cut slopes were studied. An attempt to classify the rocks into several groups according to their acid generation potentials was made. Acid Base Accounting(ABA) tests, commonly used as a screening tool in ARD predictions, were performed. Fourteen rock samples were classified into PAF(potentially acid forming) group and four rock samples into NAF(non-acid forming) group. The chemical analysis of water samples strongly suggested that ARD with high content of heavy metals and low pH could pollute the ground water and/or stream water.

Water quality evaluation research through long-term water quality monitoring in Seohwa Stream Watershed (서화천유역 장기 수질모니터링을 통한 수질평가 연구)

  • Kal, Byungseok;Park, Jaebeom;Mun, Hyunsaing;Cho, Sohyun;Joo, Yongeun;Min, Kyeongok
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.256-267
    • /
    • 2022
  • This study analyzed the current status and trend of water quality using long-term water quality monitoring data measured over the past 5 years in the Seohwacheon Basin, located upstream of Daecheong Lake. In the Seohwacheon Basin, a project is underway to reduce the occurrence of algal blooms in the Daecheong Lake and to improve water quality, and continuous management is required for water quality management. The current water quality evaluation aims to identify the water quality management point, and the good water grade and the integrated water quality index (WQI) were used. For trend evaluation, the effect of the water quality improvement project was evaluated using the Mann-Kendall test and Sen's Slope. As a result of the evaluation, the current water quality index was used to identify the watersheds and when to manage water quality, and the effect of the improvement project was confirmed through trend analysis. Through this study, it is possible to review the water quality status and improvement effect using long-term water quality monitoring data, so it is expected to be applicable to similar types of watersheds in the future.

An analysis of hydraulic characteristics of stepped boulder fishway installed in mountain stream (산지하천에 설치된 계단식 전석 어도의 수리 특성 분석)

  • Kim, Ki Heung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.99-109
    • /
    • 2022
  • This study was intended to suggest the applicability of stepped boulder fishway using the concept of traditional boulder weir, focusing on the problems of existing concrete pool-and-weir fishways installed in mountain streams. To achieve this purpose, a stepped boulder fishway was designed and constructed as a pilot project in consideration of ascending capacity of the selected target fishes. Under the given discharge conditions, the hydraulic characteristics of the fishway were investigated in the field, and the characteristics and ascending capacity of the fishes were compared and analyzed. The fishway had a short length and steep slope, but the mean drops between each baffle were the range of 0.15 to 0.29 m, and this range satisfied the limit condition of about 0.40 m, which was in the limit of the drop that target fishes can ascend. The mean velocities of each baffle and pool were 0.82 to 0.87 m/sec and 0.13 to 0.24 m/sec. This result satisfied the conditions of burst speed (10 to 30 times of body length) and mean velocity of the resting pool (7 to 25% of burst speed) for target fishes. Since the bottom surface of the pool formed of boulders had a gentle reverse slope and rotational flow did not occur, the efficiency of fishway can be increased, and it will also be possible to solve the maintenance problem by flushing bed materials.

The Relationship between Soil Erosion and Cultivation in the Bockha Stream Watershed Area (복하천 유역의 토양유실량 및 경작지의 상관 분석)

  • Lee, Jin-Young;Yang, Dong-Yun;Kim, Ju-Young;Hong, Sea-Sun;Kim, Jin-Kwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.56-65
    • /
    • 2006
  • In the past, flooding is commonly occurred in the Bockha stream watershed area with inundation by the water and eroded sediments. The purpose of this study is to find the relationship between area under cultivation and amount of soil erosion in each watershed areas using geographic information system(GIS) for decreasing the damages of flooding. The soil erosion amounts were computed on GIS using by universal soil loss equation(USLE). Small catchment areas was divided by topography and computed soil erosion amounts. The mean amount of soil erosion is 0.03 $ton/ha{\cdot}yr$ on the condition of the 1,329 mm/yr annual precipitation. The high erosion area(0.05 $ton/ha{\cdot}yr$) is shown in farm areas of the Sangyong-ri in Baeksa-myeon. The high erosion watershed area is related on the slopes of the farm lands and bare soil areas adjoining between the mountain slope and fluvial streams show much amount of soil erosion.

  • PDF

Application of a Grid-Based Rainfall-Runoff Model Using SRTM DEM (SRTM DEM을 이용한 격자기반 강우-유출모의)

  • Jung, In-Kyun;Park, Jong-Yoon;Park, Min-Ji;Shin, Hyung-Jin;Jeong, Hyeon-Gyo;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.157-169
    • /
    • 2010
  • In this study, the applicability of SRTM(The Shuttle Radar Topography Mission) DEM(Digital Elevation Model) which is one of the remotely sensed shuttle's radar digital elevation was tested for use as the input data in a grid-based rainfall-runoff model. The SRTM DEM and digital topographic map derived DEM(TOPO DEM) were building with 500m spatial resolution for the Chungju-Dam watershed which located in the middle east of South Korea, and stream-burning method was applied to delineate the proper flow direction for model application. Similar topographical characteristics were shown as a result of comparing elevation, flow-direction, hydrological slope, number of watershed cell, and profile between SRTM DEM and TOPO DEM. Two DEMs were tested by using a grid-based rainfall-runoff model named KIMSTORM with 6 storm events. The results also showed no significant differences in average values of relative error for both peak runoff(0.91 %) and total runoff volume(0.29 %). The results showed that the SRTM DEM has applicability like TOPO DEM for use in a grid-based rainfall-runoff modeling.

Estimation of Sediment Discharge Controlled by Sediment-filled Check-dam in a Forested Catchment (산림유역의 만사 사방댐에 의한 토사유출 조절 효과 추정)

  • Seo, Jung Il;Chun, Kun Woo;Song, Dong Geun
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.321-329
    • /
    • 2016
  • To estimate the sediment discharge controlled by sediment-filled check-dam and thereby enhancing factor for check-dam design and dredging criteria, we surveyed slope failures and stream-bed fluctuation caused by geomorphic disturbances (i.e., landslides and debris flows) in Inje, Gangwondo. In general, check-dams play roles for restraining and controlling sediment discharge within a section under the design equilibrium gradient and a section under the design flood gradient, respectively. The results in this study showed same pattern: that is, the closed type check-dam, which has a design restraint sediment discharge of $2,111m^3$, estimated to control a sediment discharge of $3,996m^3$ in the stream section within 250 m right upper area immediately after the disturbances occurred in 2006. As a result, a design control sediment discharge of the check-dam was larger than its design restraint sediment discharge. This represents that the check-dam is still having an own function for controlling sediment discharge although it exceeded the designed capacity by the sediment discharged from upstream during the disturbances. Our finding suggests that the sediment discharge controlling of check-dam may need to be evaluated separately from its sediment discharge restraint. Currently, the country, however, does not consider the design control (or restraint) sediment discharges, based on the actual field survey, as criteria for check-dam design and/or dredging work. Therefore, the accumulation of the quantitative data is required to support that check-dam has functions for both restraining and controlling sediment discharge. This would be a way to develop our erosion control technology to the scientific technology equipped with a more objective and systematic aspects.