• Title/Summary/Keyword: Stream Flood

Search Result 505, Processing Time 0.022 seconds

Spatial Analysis of Flood Inundation for Ensuring Stream Space (하천공간 확보를 위한 홍수의 공간적 범람 분석)

  • Choi, Cheonkyu;Kim, Joohun;Kim, Kyuho;Kim, Gilho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.341-351
    • /
    • 2015
  • This study is to select the areas to ensure stream space or to implement flood defence measures according to flood frequencies by classifying the stream segment using river bed slope in Mangyeong river. The analysis result for each stream segment showed that the variation of flood inundation area was small in upper stream catchment. But in the lower stream area, the inundation area became larger greatly according to the increase of flood return period. This study classified the catchment of each steam segment as the region of ensuring stream space (ESS), below 10% residential area ratio, and the region of reinforcing flood defence (RFD), over 10% residential area ratio. The analysis results showed that the lower stream area included more RFD regions than upper stream area, and the upper stream area included more ESS regions than lower stream area. In future study, the regions stream spaces can be ensured will be analyzed considering the past stream morphology and the positions of wetlands.

Analysis of Flood Inundation Area using HEC-RAS/GIS (HEC-RAS/GIS를 이용한 홍수 범람지역 분석)

  • An, Seung Seop;Lee, Jeung Seok;Kim, Jong Ho
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • The purpose of the study was to construct a forecast system of flood inundation area at natural stream channels. The study built the system to interpret the flood inundation area in four stages ; constructing topography data around the stream channel, interpreting flood discharge, interpreting flood elevation in the stream channel, and interpreting the flood inundation and mapping. According to the result of the analysis, as for the characteristic of flood inundation around the area within the purview of this study, although there were areas where flood inundation over a bank caused a flooded area, the failure of the internal drainage in the ground lower than flood elevation caused more serious problems. Rather than the existing method where only the estimated flood elevation data is used based on the hydrographical stream channel trace model(such as the HEC-RAS model) to establish the flood inundation area, if the procedure introduced in this study was applied to interpret the floodplain, actual flood inundation area could be visibly confirmed.

Recovery of aquatic insect communities after a catastrophic flood in a Korean stream

  • Lee, Hwang-Goo;Bae, Yeon-Jae
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.169-177
    • /
    • 2011
  • In August 2002, a heavy rainfall (445 mm in total for 5 consecutive days) resulted in a catastrophic flood, and it completely washed away the benthic fauna from the mainstream channel of the Gapyeong stream, a typical mid-sized stream in the central Korean peninsula. This study was to investigate the recovery patterns of aquatic insect communities that were damaged by the flood. Aquatic insects were sampled quantitatively using a Surber sampler ($50{\times}50$ cm, 1 riffle and 1 pool/run habitats per site) from three sites (4th-6th order) of the Gapyeong stream prior to 2000 and seasonally after the flood event from 2003 to 2006. Before the flood in the reference year (2000), a total of 77 species of aquatic insects were collected, whereas after the flood 47 species (2003), 51 species (2004), 64 species (2005) and 55 species (2006) were collected from the whole sampling sites. The aquatic insect density decreased to 26.85% (2003), 90.25% (2004), 52.53% (2005) and 54.95% (2006) of that recorded in the reference year. Although approximately 70% of the aquatic insect fauna has recovered since the flood event, the species composition in the most recent year differed substantially (similarity ca. 50%). On the other hand, the compositions of functional groups have not significantly changed. Aquatic insect communities at the riffle sites were affected more profoundly than those at the pool/run sites. The aquatic insect communities at the upstream site recovered more rapidly than those at the downstream sites.

Flood Hazard Map in Woo Ee Stream Basin Using Conclusive Hydraulic Routing Model (결정론적 홍수위 추적 모형을 이용한 우이천 유역의 홍수범람도 작성)

  • Moon, Young-Il;Yoon, Sun-Kwon;Kim, Jae-Hyun;Ahn, Jae-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.637-640
    • /
    • 2008
  • Flood control and river improvement works are carried out every year for the defense of the flood disaster, it is impossible to avoid the damage when there is a flood exceeding the capacity of hydraulic structures. Therefore, nonstructural counter plans such as the establishment of flood hazard maps, the flood warning systems are essential with structural counter plans. In this study, analysis of the internal inundation effect using rainfall runoff model such as PC-SWMM was applied to Woo Ee experimental stream basin. Also, the design frequency analysis for effects of the external inundation was accomplished by main parameter estimation for conclusive hydraulic routing using HEC-RAS model. Finally, inundated areas for flood hazard map were estimated at Woo Ee downstream basin according to flood frequency using HEC-GeoRAS model linked by Arc View GIS.

  • PDF

Estimation of Flood Discharge Based on Observation Data Considering the Hydrological Characteristics of the Han Stream Basin in Jeju Island (한천유역의 수문학적 특성을 고려한 관측자료 기반 홍수량 산정)

  • Yang, Sung-Kee;Kim, Min-Chul;Kang, Bo-Seong;Kim, Yong-Seok;Kang, Myung-Soo
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1321-1331
    • /
    • 2017
  • This study reviewed the applicability of the existing flood discharge calculation method on Jeju Island Han Stream and compared this method with observation results by improving the mediating variables for the Han Stream. The results were as follows. First, when the rain-discharge status of the Han Stream was analyzed using the flood discharge calculation method of the existing design (2012), the result was smaller than the observed flood discharge and the flood hydrograph differed. The result of the flood discharge calculation corrected for the curve number based on the terrain gradient showed an improvement of 1.47 - 6.47% from the existing flood discharge, and flood discharge was improved by 4.39 - 16.67% after applying the new reached time. In addition, the sub-basin was set separately to calculate the flood discharge, which yielded an improvement of 9.92 - 32.96% from the existing method. In particular, the steepness and rainfall-discharge characteristics of Han Stream were considered in the reaching time, and the sub-basin was separated to calculate the flood discharge, which resulted in an error rate of -8.77 to 8.71%, showing a large improvement of 7.31 - 28.79% from the existing method. The flood hydrograph also showed a similar tendency.

Development and Assessment of Flow Nomograph for the Real-time Flood Forecasting in Cheonggye Stream (청계천 실시간 홍수예보를 위한 Flow Nomograph 개발 및 평가)

  • Bae, Deg-Hyo;Shim, Jae Bum;Yoon, Seong-Sim
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1107-1119
    • /
    • 2012
  • The objectives of this study are to develop the flow nomograph for real-time flood forecasting and to assess its applicability in restored Cheonggye stream. The Cheonggye stream basin has the high impermeability and short concentration time and complicated hydrological characteristics. Therefore, the flood prediction method using runoff model is ineffective due to the limit of forecast. Flow nomograph which is able to forecast flood only with rainfall information. To set the forecast criteria of flow nomograph at selected flood forecast points and calculated criterion flood water level for each point, and in order to reflect various flood events set up simulated rainfall scenario and calculated rainfall intensity and rainfall duration time for each condition of rainfall. Besides, using a rating curve, determined scope of flood discharge following criterion flood water level and using SWMM model calculated flood discharge for each forecasting point. Using rainfall information following rainfall scenario calculated above and flood discharge following criterion flood water level developed flow nomograph and evaluated it by applying it to real flood event. As a result of performing this study, the applicability of flow nomograph to the basin of Cheonggye stream appeared to be high. In the future, it is reckoned to have high applicability as a method of prediction of flood of urban stream basin like Cheonggye stream.

Development of River-Reservoir Integrated Model for Flood Reduction Capacity Analysis of Off-Stream Reservoir (천변저류지 홍수저감능력평가를 위한 하도-저류지연계모형의 개발)

  • Choi, Sung-Yeul;Ahn, Tae-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.165-174
    • /
    • 2011
  • The purpose of this research is to develop the model for analyzing the hydraulic behavior of off-stream reservoir whose purpose is to reduce a peak flood. When a flood occurs in river, off-stream reservoir has a capability of sharing a part of peak flood. It is accomplished by flowing over a off-line weir that is built by lowering a portion of bank and connecting river with off-line reservoir. Since flood control depends on river elevation, characteristics of off-line weir (elevation, length, position et al.) and reservoir capacities, an integrated model linking the one dimensional unsteady river flow model, off-line weir model and two dimensional unsteady flood model is developed to analyze the behavior of off-stream reservoir and off-line weir. The results show that a flood control capability of off-stream reservoir strongly depends on facilities of off-line weir and storage capacity of offstream reservoir.

Enhancement of Digital Elevation Models for Improved Estimation of Small Stream Flood Inundation Mapping (DEM 개선을 통한 중소하천 홍수범람지도 정확도 향상)

  • Kim, Tae-Eun;Seo, Kang-Hyeon;Kim, Dong-Su;Kim, Seo-Jun
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1165-1176
    • /
    • 2016
  • The accuracy of digital elevation models (DEMs) is crucial for properly estimating flood inundation area. DEM pixel size is especially important when generating flood inundation maps of small streams with a channel width of less than 50 m. In Korea, DEMs with large spatial resolutions of 30 m have been widely applied to generate flood inundation maps, even for small streams. Additionally, when making river master plans, field observations of stream cross-sections, as well as reference points in the middle of the river, have not previously been used to enhance the DEM. In this study, it was graphically demonstrated that high-resolution DEMs can increase the accuracy of flood inundation mapping, especially for small streams. Also, a methodology was proposed to modify the existing low-resolution DEMs by adding additional survey reference points, including river cross-sections, and interpolating them into a high spatial resolution DEM using the inverse distance weighting method. For verification purposes, the modified DEM was applied to Han stream on Jeju Island. The modified DEM showed much better accuracy when describing morphological features near the stream. Moreover, the flood inundation maps were formulated with the original 30 m pixel DEM and the modified 0.1 m pixel DEM using HEC-RAS modeling of the actual flood event of Typhoon Nari, and then compared with the flood history map of Nari. The results clearly indicated that the modified DEM generated a similar inundation area, but a very poor estimate of inundation area was derived from the original low-resolution DEM.

A Study on The Bed Scour at Stream Bridge during Flood - In the case of Jeongjang Bridge in Gurye - (홍수시 소하천 교량에서의 하상세굴 연구 - 구례 정장교를 중심으로 -)

  • Jung, Jae-Sung;Chung, Mahn;Kim, Min-Hwan
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1075-1080
    • /
    • 2002
  • The hydrological frequency of the flood in July 2000 at Seosi stream basin in Gurye and the bed scour of the stream channel were estimated to investigate the bed scour related with Jeongjang bridge collapse. The storm over the basin in July 2000, 303mm/day was 103year frequency rainfall and the equivalent flood was 2580cms. As the results of 100year and 30year flood application, flood level 30.78~31.38m and mean velocity 3.79~4.03m/s were appeared. And the purification project of Seosi stream increased the velocity of the section near to Jeongjang bridge by the improvement of conveyance at the downstream. The local scour at pier was the major factor of bed scour at Jeongjang bridge site and the total scour at pier No.6 was increased from 2.32m to 2.45m by the purification project.

Analysis of Flood Characteristics in Urban Stream Basin Using Numerical Models (수치모형을 이용한 도시 하천의 홍수특성 분석)

  • Yoon, Sun-Kwon;Moon, Young-Il;Kim, Jong-Suk;Choi, Byung-Hwa
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.599-602
    • /
    • 2007
  • Flood damage has been increased due to abnormal climate and extreme rainfall. Especially, the increase of impervious areas and the decrease of flow travel times due to the urbanization have been caused heavy division of flood with the recent rainfall characteristics. In this study, hydrodynamics flow analysis has been needed two dimensional numerical analysis for correct stream flow interpretations on bridges as hydraulic structures in rivers. Therefore, comparative analysis has been accomplished by using HEC-RAS model and SMS-RMA2 model for one and two dimensional flow. Also, flood characteristics have been analyzed in urban stream basin.

  • PDF