• 제목/요약/키워드: Streaky Structures

검색결과 4건 처리시간 0.02초

난류경계층의 헤어핀 다발구조에 대한 3차원 토폴로지 규명 (Identification of the three-dimensional topology of hairpin packet structures in turbulent boundary layers)

  • 권성훈;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.610-615
    • /
    • 2003
  • This experiment has been carried out to find the structure of turbulent boundary layer with instantaneous velocity fields obtained in stream-wall-normal planes using a stereo-PIV (Particle Image Velocimetry) method. And it has been measured perpendicular plane and horizontal plane with hairpin vortex structure by Reynolds number change and made third dimension shape for section of horizontal plane through stereo-PIV. In the outer layer hairpin vortices occur in streamwise-aligned packets that propagate with small velocity dispersion. A streaky structure is composed of counter-rotating vortex. According as y+ increases, streaky structure's interval space decrease, and it shows that hairpin shape of prior research is vertified. The objective of the present research is to gain a better understanding of coherent structures in the outer of wall turbulence by experimentally examining coherent structures.

  • PDF

난류경계층의 3차원 헤어핀 다발구조에 대한 실험적 연구 (Experimental Study on the Three-Dimensional Topology of Hairpin Packet Structures in Turbulent Boundary Layers)

  • 권성훈;윤상열;김경천
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.834-841
    • /
    • 2004
  • Experimental study on the three-dimensional topology of hairpin packet structures in turbulent boundary layers were carried out. Two different Reynolds number based on momentum thickness, Re$\sub$$\theta$/=514 and 934 were generated in a blowing type wind tunnel under the condition of zero pressure gradient. Simultaneous measurements of velocity fields at a wall-normal plane and wall-parallel plane by a plane PIV and a Stereo-PIV systems. The two Nd:Yag laser systems and three CCD cameras were synchronized to obtain instantaneous velocity fields at the same time. To avoid optical noise at the crossing line by the two laser light sheets, a new optical arrangement using polarization was applied. The obtained velocity fields show the existence of hairpin packet structure vividly and the idealized hairpin vortex signature is confirmed by experiment. Two counter-rotating vortex pair which reflects the cutting plane of hairpin legs are found both side of a strong streaky structure when the wall-normal plane cuts the hairpin head.

Development of low-frequency streaks in Blasius boundary layer

  • ;전호환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.257-261
    • /
    • 2003
  • A free stream vortical disturbance generated by a single axial vortex of periodically modulated strength was used to investigate vortical receptivity of a flat plate boundary layer to low-frequency spatially localized free-stream disturbances. It was found that the boundary-layer response was dominated by stream-wise velocity perturbation (streak). However, in contrast to the stationary streaks considered by Boiko (2002), its intensity showed no pronounced growth along the flat plate.

  • PDF

Circular Fast Fourier Transform Application: A Useful Script for Fast Fourier Transform Data Analysis of High-resolution Transmission Electron Microscopy Image

  • Kim, Jin-Gyu;Yoo, Seung Jo;Kim, Chang-Yeon;Jou, Hyeong-Tae
    • Applied Microscopy
    • /
    • 제44권4호
    • /
    • pp.138-143
    • /
    • 2014
  • Transmission electron microscope (TEM) is an excellent tool for studying the structure and properties of nanostructured materials. As the development of $C_s$-corrected TEM, the direct analysis of atomic structures of nanostructured materials can be performed in the high-resolution transmission electron microscopy (HRTEM). Especially, fast Fourier transform (FFT) technique in image processing is very useful way to determine the crystal structure of HRTEM images in reciprocal space. To apply FFT technique in HRTEM analysis in more reasonable and friendly manner, we made a new circular region of interest (C-ROI) FFT script and tested it for several HRTEM analysis. Consequentially, it was proved that the new FFT application shows more quantitative and clearer results than conventional FFT script by removing the streaky artifacts in FFT pattern images. Finally, it is expected that the new FFT script gives great advantages for quantitative interpretation of HRTEM images of many nanostructured materials.