• Title/Summary/Keyword: Strawberry Disease

Search Result 123, Processing Time 0.019 seconds

Gain Threshold Estimation for Some Pests in Major Crops (주요 작물 몇 가지 병해충에 대한 수익역치 추정)

  • Park, Hong-Hyun;Yeh, Wan-Hae;Park, Hyung-Man
    • Korean journal of applied entomology
    • /
    • v.46 no.1 s.145
    • /
    • pp.63-69
    • /
    • 2007
  • This study was conducted to examine the problems that would arise in our cropping systems when introducing Gain Threshold (GT) which is an important element in determining Economic Injury Level (EIL). Cain Threshold (GT) can be defined as the amount of damage (=yield loss) to justify management, and calculated by dividing the management costs by the market crop price. GTs for some pests in rice, soybean, and greenhouse vegetable crops cultivation were estimated and also compared with those in foreign countries. GTs and percentage of yield loss equivalent to them were estimated to be 4.6-6.1kg/10a/season and 1.0-1.3% for brown planthopper, white-backed planthopper, rice water weevil, and sheath blight, whereas for rice blast in rice cultivation were 12.7kg/10a/season and 2.7%. In soybean cultivation, the values for bean bug were 6.2 kg/10a/season and 3.6%. GTs and percentage of yield loss estimated for melon thrips, whitefly, and downy mildew in cucumber cultivation were 10.0-12.6kg/10a/week, 1.4-1.7%, and the values for two spotted mite and gray mildew in strawberry cultivation were 3.1-3.5kg/10a/week, 1.3-1.5%, and the values for American leaf minor, whitefly, and gray mold in tomato were 8.4-9.7kg/10a/week, 1.7-1.9%. Overall GTs in our cropping systems were so low compared to those in foreign countries, which meant that the low GTs might yield the low EILs. Therefore, we could suggest that prior to direct introduction of GTs calculated from current cultivation systems in developing EILs it is necessary to seriously consider reasonable values of GTs or the yield loss equivalents to them.

Safety Assesment of Pesticides Treated on Garlic to Control Black Rot during the Storage (마늘 저장 중 부패병 방제를 위하여 처리한 농약의 경시적 농약 잔류량 평가)

  • You, Oh-Jong;Jin, Yong-Duk;Hwang, Se-Gu;Lee, Yong-Hoon;Ihm, Yang-Bin;Kim, Jin-Bae;Kwon, Oh-Kyung;Kyung, Kee-Sung;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.3
    • /
    • pp.148-158
    • /
    • 2009
  • We tested and selected some agrochemicals reducing the occurrence of major pests and diseases during garlic storage. Tebuconazole, diphenylamine and prochloraz as fungicides and dimethate as a insecticide were sprayed or drenched before harvest. And the harvested garlic was dipped in each of the agrochemicals. The residues of pesticides in garlic bulbs treated were analyzed every month from harvesting time for 6 months. In case of Danyang garlic, which was treated with pesticides before and after harvesting, the residues of diphenylamine, tebuconazole, prochloraz, and dimethoate ranged from 0.008 to 0.28, from 0.03 to 0.32, from 0.02 to 0.12, and from 0.02 to 0.25 mg/kg, respectively. In case of Uiseong garlic, the residues of diphenylamine, tebuconazole, prochloraz and dimethoate ranged from 0.008 to 0.09, from 0.08 to 0.45, from 0.02 to 0.57, and from 0.04 to 0.38 mg/kg, respectively. And, in case of Namdo garlic, the residues of diphenylamine, tebuconazole, prochloraz, and dimethoate ranged from 0.008 to 0.52, from 0.07 to 1.67, from 0.02 to 0.17, and from 0.03 to 0.73 mg/kg, respectively. Some of the garlic samples treated with tebuconazole exceeded its maximum residue limits (MRLs) of 0.1 mg/kg set by Korea Food Drug Administration (KFDA), but dimethoate was detected below its MRL of 1.0 mg/kg. In case of diphenylamine and prochloraz, their MRLs for garlic were not set. Adapting their MRLs, 5.0 mg/kg of diphenylamine for apple and pear and 0.5 mg/kg of prochloraz for strawberry and grape, residue levels of diphenylamine and procloraz were below than their MRLs, with the exception of samples two times treated with procloraz in Namdo garlic. These results indicate that dimethoate can be used as an agrochemical to control the postharvest disease in garlic in only MRL aspect.

Response to Fungicides of Colletotrichum Species Isolated from Infected Tissues of Several Crops (다양한 작물로부터 분리한 탄저병균(Colletotrichum spp.)의 살균제에 대한 반응)

  • Kim Joon-Tae;Min Ji-Young;Kim Heung-Tae
    • Research in Plant Disease
    • /
    • v.12 no.1
    • /
    • pp.32-39
    • /
    • 2006
  • This study has been conducted to investigate the responses of various isolates of four Colletotrichum species such as C. gloeosporioides, C acutatum, C. coccodes, and C. dematium isolated from infected tissues of several crops to fungicides such as carbendazim, carbendazim+diethofencarb, four protective fungicides, and three ergosterol biosynthesis-inhibiting (EBI) fungicides. All the isolates of C. acutatum showed $EC_{50}$ values in a range of 0.001-3.040 ${\mu}g/ml$ against carbandazim, a benzimidazole fungicide. As for the response to carbendazim, the isolates of C. gloeosporioides obtained from pepper, apple, and strawberry were clearly divided into two groups, resistant or sensitive isolates. All the resistant isolates showed $EC_{50}$ values above 1000 ${\mu}g/ml$, whereas the sensitive isolates had lower $EC_{50}$ values than 0.550 ${\mu}g/ml$. The isolates of C. gloeosporioides exhibited a negative cross resistance between carbendazim and diethofencarb (a N-phenylcarbamate fungicide), but isolates of C. acutatum did not. Toward carbendazim, C. coccodes and C. dematium isolates showed a similar response to C. acutatum isolates and the sensitive isolates of C. gioeosporioides, respectively. As for response of Protective fungicides, all the isolates of C. acutatum showed a more resistant reaction than all the isolates of C. gloeosporioides. However, there was no difference among 4 species of Colletotrichum against EBI fungicides.