• Title/Summary/Keyword: Stratigraphy

Search Result 206, Processing Time 0.026 seconds

Improved Arctic Ocean Oxygen Isotope Stratigraphy Results from the Yermak Plateau (ODP Leg 151 : Site 910A)

  • ;Jochen, Knies;dreas , Mackensen;Jens, Matthiessen;Christoph, Vogt
    • Proceedings of the Korean Quaternary Association Conference
    • /
    • 2004.06a
    • /
    • pp.51-51
    • /
    • 2004
  • As an important contribution to the planed drilling (IODP) in the central part of the Arctic Ocean, we are currently working on a refined chronostratigraphy for Marine Isotope Stage (MIS) 16 to MIS 2 on the exciting material from ODP Site 910A (Leg 151) which has been recovered from the marginal Eastern Arctic Ocean (the Yermak Plateau - the Atlantic/Arctic Ocean Gateway). Several stratigraphic age fix-points support the interpretation of the stable oxygen. isotope record of planktonic foraminifer N, pachyderma sin. that is punctuated by several short-term meltwater events. We believe that our new record will serve as 'the important correlating tool for establishing a basic stratigraphy for the Quaternary Arctic Ocean as well as for generating high-resolution paleoenvironmental reconstructions in the central Arctic Ocean. Furthermore, our study will provide reference stratigraphic data sets for interpreting the micropaleontological, sedimentological and organic / inorganic - geochemical proxies of the new boreholes that will be drilled on the Lomonosov Ridge(Central Arctic Ocean) in the frame of the "Arctic Coring Expedition' (ACEX, IODP) in summer 2004.

  • PDF

Volcano-Stratigraphy and Petrology of the Volcanic Mass in the Koheung Peninsula, South Cheolla Province, Korea (전남(全南) 고흥반도(高興半島)에 분포(分布)하는 화산암류(火山岩類)의 화산층서(火山層序) 및 암석학적(岩石學的) 연구(硏究))

  • Yun, Sung Hyo;Hwang, In Ho
    • Economic and Environmental Geology
    • /
    • v.21 no.4
    • /
    • pp.335-348
    • /
    • 1988
  • The author aimed to describe the volcano-stratigraphy and petrology of the volcanic mass in the Koheung peninsula, South Cheolla province. The volcanic mass is composed of the volcanics and intrusives of late Cretaceous which extruded the Pre-cambrian metamorphic(Jirisan gneiss complex) and the early Cretaceous sedimentary(Duwon Formation) basement. The volcanic pile consists of, in ascending order, Bibongsan andesite, Koheung tuff and breccia, and Palyeongsan welded tuff, and are intruded by ring intrusives( intrusive breccia, andesite porphyry, intrusive rhyolite and fine-grained quartz-diorite) and central pluton(diorite, quartz monzodiorite, biotite granite and micrographic granite). Bibongsan andesite mainly consists of andesite tuff and lava. Koheung tuff consists of alternation of fine tuff, coarse tuff and lapilli tuff, and Palyeongsan welded tuff which overlies Koheung tuff, comprises K-feldspar and quartz phenocrysts, elongated brown fiamme, lithic fragments in matrix of devitrified brown glass shards, and mainly consists of rhyodacite to rhyolite vitric ash-flow tuff. The results of petrochemical studies of the igneous rocks suggest that the rocks were a serial differentiational products of fractional crystallization of calc-alkaline magma series. This study reveals that the volcanic mass in this area is inferred to the remnant of the resurgent cauldron, measuring 30 by 25 km in diameter. The cauldron block was lowered at least 1,000 m by ring fault displacement.

  • PDF

Reply to the Article "On the Geological Age of the Ogcheon Group" by C.M. Son ("옥천층군(沃川層群)의 지질시대(地質時代)에 관(關)하여"에 대(對)한 회답(回答))

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.3 no.3
    • /
    • pp.187-191
    • /
    • 1970
  • There is a discrepancy in opinion regarding geological age of Okchon system among professor C.M. Son and the writer who represent the two school of thought in precambrian stratigraphy in Korea as a whole. This brief article is a reply to the recent paper by C.M. Son titled "On the geological age of the Ogcheon Group" The discrepancy in opinion on the age Okchon system is based mainly on the difference in opinion about the age of Majeonri, Hwachonri and Kounri formations, the age of which professor Son believes as post-ordovician and regards them as a part of the Great Limestone series and the base of the Ogchon Group. The writer is in a opinion that Okchon system belong to precambrian in age and Majeonri-, Hwachonri-, and Kounri formations are the same formation composing an upper member of Okchon system. The writer's opinion is based on the facts that i) stratigraphical sequence of Okchon system established by the writer was accepted by C.M. Son who used believed the reverse order in sequence and confessed his mistake in his article; and ii) regional stratigraphy and structure strongly support's to writer's opinion. The writer pointed out and discussed in this paper various facts which do not support Son's idea by any means.

  • PDF

Field Behavior of Residual Stresses on Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝에 작용하는 잔류응력의 현장거동)

  • Nam, Moon-S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.35-42
    • /
    • 2011
  • The residual stress on drilled shafts is often neglected. Neglect of the existence of locked-in loads in the shaft is the main reason for conclusions of instrumented tests which suggest that shaft resistance is smaller when the shaft is loaded in tension than when it is loaded in compression. A few researchers studied the residual stress and mentioned that the residual stress is influenced by either the physical expansion/contraction of concrete during the curing or site stratigraphy. In this study, field measurements of residual stress on test shafts were conducted and the factors influencing the residual stress were figured out.

Geomagnetism of Daedong Super Group in the Mungyong Area (I) (문경(聞慶) 지역(地域)에 분포(分布)하는 대동누층군(大同累層群)에 대(對)한 고지자기연구(古地磁氣硏究)(I))

  • Min, Kyung-Duck;Lee, Youn-Soo;Kim, Won-Kyun
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.81-86
    • /
    • 1990
  • Palemagnetic study on the Deadong Super Group in the Mungyong area has been carried out to obtain the direction of NRM and virtual geomagnetic pole(VGP), and to investigate geomagnetic stratigraphy and geotectonic evolution. Twenty eight core specimens from five sites in Dangog and Bongmyongsan Formations yield magnetically stable results by thermal demagnetization test. Mean declination and inclination of Dangog and Bongmyongsan formations are $52.4^{\circ}E$ and $-57.3^{\circ}$, respectively, which indicate reversal polarity. VGP is located at $1.2^{\circ}N$ in latitude and $269.4^{\circ}E$ in longitude, which is quite different from those of other contemporary formations in China. This suggests that the study area has suffered from differnt tectonic movement caused by Daebo Orogeny occurred in the Korean Peninsula during post-Daedong and pre-Kyongsang Systems. As compared VGP of Daedong Super Group in the Mungyong area with wordwide Mesozoic paleomagnetic polarity stratigraphy, it is correlated with the reverse Epoch in the Graham normal interval. This suggests that the time of formations of Dangog and Bongmyongsan is in the age of 190-195 my.

  • PDF

Late Quaternary (Late Pleistocene and Holocene) Stratigraphy and Unconformity in the Kimpo Tidal Deposits, Kyunggi Bay, West Coast of Korea (경기만 김포 조간대 지층의 제 4기 후기 층서)

  • 박용안;최경식;도성재;오재호
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.79-89
    • /
    • 1999
  • Three deep borings to obtain vertical continuous samples including weathered basement soils (KP-1, KP-2 and KP-3) were carried out in the reclaimed Kimpo tidal flat with purposes to establish late Quaternary stratigraphy. On the basis of detailed observations and descriptions on color, sedimentary structure and textural composition of cored sediments, four lithostratigraphic units are classified. From the stratigraphic top to bottom, they are Holocene tidal sand and muddy deposit (Unit I), early Holocene freshwater marsh muddy deposit (Unit II), late Pleistocene tidal sand and muddy deposit (Unit III) and late Pleistocene basal fluvial gravel deposit (Unit IV). In particular, Unit III is divided into two parts: the upper part-weathered and cryoturbated part during the Last Glacial Maximum (Unit III-a) and the lower part-unweathered tidal sand and muddy deposit (Unit III-b).

  • PDF

Subdivision of Precambrian Time and Precambrian Stratigraphy of North-eastern Asia and some problems on the Korean Geological terms (선캠브리아의 지질시대 구분 및 동북 아시아 선캠브리아의 층서와 이에 관한 우리말 용어의 문제점)

    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.10-20
    • /
    • 1996
  • The increament of crustal thickness, continental growth and evolution, plate tectonic movements, and mega-impacts of meteorites have been worldwidely studied in the subdivision of Precambrian. In many subdivision methods of Precambrian Eon and Eonthem, the division based on the principle of the Plate tctonic movement referred internationally, is as follows, $L^AT_EX$ The rationality of this subdivision and some problems in the currently adopted stratigraphic subdivision of Precambrian Eonthem will by commented, and the validity of English and Korean Geological terminology on the Precambrian stratigraphy of northeastern Asia will be discussed also.

  • PDF

Stable Carbon Isotope Stratigraphy of the Cambrian Machari Formation in the Yeongweol Area, Gangweon Province, Korea

  • Chung, Gong-Soo;Lee, Jeong-Gu;Lee, Kwang-Sik
    • Journal of the Korean earth science society
    • /
    • v.32 no.5
    • /
    • pp.437-452
    • /
    • 2011
  • The Steptoean Positive Carbon Isotope Excursion (SPICE) is found in the Machari Formation which was interpreted to have been deposited on the middle to outer carbonate ramp environment. The Machari Formation is the Middle to Late Cambrian in age and distributed in the Yeongweol area, Gangweon Province, Korea. The SPICE event in the Machari Formation begins with the first appearance datum of trilobite Glyptagnostus reticulatus and ends with the first appearance of datum of trilobite Irvingella. The SPICE is found in approximately 120 m thick sequence and ${\delta}^{13}C$ values in the SPICE interval range from 0.6 to 4.4‰. The SPICE in the Machari Formation is interpreted to be caused by burial of organic matter in the sea floor and subsequent increase of $^{13}C$ isotope of the Late Cambrian ocean. The SPICE interval in the Machari Formation corresponds to the highstand to transgressive systems tracts.

Study on Stratigraphy, Structural Geology and Hydrocarbon Potentials of the Cretaceous Strata, Northeastern Iraq (이라크 북동부 지역 백악기 퇴적층의 층서, 구조지질 및 탄화수소 부존 유망성 연구)

  • Lee, Taecheol;Han, Seungwoo;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.381-393
    • /
    • 2014
  • Seismic reflection data are integrated with fieldwork data in order to understand startigraphy, structural geology and hydrocarbon potentials of Cretaceous strata in the Mesopotamian basin, Northeastern Iraq. Cretaceous strata in the basin divided into the Qamchuqa, Kometan, Bekhme and Shiranish formations, which are composed of carbonates deposited in shallow marine environment. The geological structures in these formations are mainly recognized as thrusts, detachment folds, fault propagation folds and fault bend folds. As well, NW-SE trending fractures are regularly developed, and are horizontal or perpendicular to the structures. The distribution and frequency of fractures are related to the development of the thrusts. In terms of hydrocarbon potentials, Cretaceous strata in the basin have limited capacities for source rocks and seal rocks due to the lack of organic carbon content and the well-developed fractures, respectively. Although these carbonates have limited primary porosity, however, development of the secondary porosity derived from the fractures contributes to enhance the reservoir quality. Most important factor for the reservoir quality of Cretaceous strata seems to be the frequency and connectivity of fractures relative to locations of folds and faults. The results delineated in this study will use as reference for recognizing stratigraphy and structures of Cretaceous strata and will provide useful information on hydrocarbon potentials of Cretaceous strata in the Mesopotamian basin, NE Iraq.

The Stratigraphy and Geologic Structure of the Great Limestone Series in South Korea (남한(南韓) 대석회암통(大石灰岩統)의 층서(層序)와 지질구조(地質構造))

  • Kim, Ok Joon;Lee, Ha Young;Lee, Dai Sung;Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.6 no.2
    • /
    • pp.81-114
    • /
    • 1973
  • The purpose of the present study is to clarify the stratigraphy and geologic structure of the Great Limestone Series by means of study on fossil conodonts and detail investigation of geologic structure. In recent years very few geologists in Korea argue without confident evidences against the age and stratigraphy of the Great Limestone Series which have been rather well established previously in most parts of the regions although it is ambiguous and has not been studied in other areas. Five type localities in the Kangweon basin where the Great Limestone Series is well cropped out were chosen for the study. Total 26 genus and 66 species of conodont were identified from 290 samples collected and treated. From the study on conodonts the age of each formations of the Great Limestone Series has been determined as follows: The Great Limestone Series of Duwibong type Duwibong limestone: Caradocian (mid-Ord.) Jikunsan shale: Landeilian (mid-Ord.) Maggol limestone: Llanvirn-Llandeilian (mid-Ord.) Dumugol: Arenigian (Ord.) Hwajeol: Upper Cambrian The Great Limestone Series of Yeongweol type Mungok (Samtaesan) : Ordovician Machari: upper Cambrian The Great Limestone Series of Jeongseon type Erstwhile Jeongseon limestone: mid-Ord. The erstwhile Jongseon Limestone formation in Jeongseon district is separated into Hwajeol, Dongjeom, Dumudong, and Maggol formations which were cropped out repeatedly by folding and faulting, but Maggol is predominant in areal distribution. Yemi Limestone Breccia bed is not a single bed but distributed in several horizons so that it bears no stratigraphic significance. The limestone bed above Yemi Limestone Breccia, which was believed by some geologists to be much younger than Ordovician, is identified to be Maggol and its age is determined to be mid-Ordovician. Sambangsan formation in Yeongweol district was believed to be Cambrian age and lower horizon than Machari formation by Kobayashi, but C. M. Son believed that it might belong to later than Ordovician and lies above the Great Limestone Series of Yeongweol type. It was identified to be upper Cambrian and lies beneath the Machari formation and above the Daeki formation, the lower most horizon of the Great Limestone Series. The age of Yeongweol type Choseon system is contemporaneous with that of Duwibong type Choseon system. The difference in lithofacies is not due to lateral facies change, but due to the difference in its depositional environment. The Yeongweol type Choseon system is believed to be deposited in the small Yeongweol basin which was separated from the main Kangweon sedimentary basin. Judging from these facts it is definitely concluded that there exists no Gotlandian formation in the regions studied. Structurally the Kangweon basin comprises five basins and two uplifted areas. These structures were originated by at least two crustal movements, that is, Songrim disturbance of Triassic and Daebo orogeny of Jurasic age.

  • PDF