• Title/Summary/Keyword: Stratified combustion

Search Result 86, Processing Time 0.023 seconds

A Study on Direct Injection Stratified Charge Combustion with Spark Ignition in Constant Volume Bomb (정적 용기내의 직접분사식 스파크 점화 성층 연소에 관한 연구)

  • Hong, M.S.;Kim, K.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.30-40
    • /
    • 1994
  • The direct-injection stratified-charge engine has the advantages of higher thermal efficiency and less CO and $NO_x$ emission levels than conventional spark ignition engines. However, its actual utilization is prevented by high unburned hydrocarbon emission levels during light-load operations. In this paper, fundamental studies were carried out using a pancake type constant volume bomb. The effects of intensification of local premixing by tangential and radial fuel injection were examined experimentally. Unburned hydrocarbon emission levels with radial fuel injection were shown to be lower than those of tangential fuel injection cases. The stratification and mixing process of fuel jet and combustion process were observed by schlieren photography.

  • PDF

Analysis of Stratified Co-Flow Flames from Chemiluminescence Images (화염 발광 가시화를 이용한 성층화된 동축류 화염 특성 분석)

  • Ahn, Taekook;Nam, Younwoo;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.185-187
    • /
    • 2012
  • The characteristics of stratified co-flow flames have been investigated from the flame chemiluminescence images. The fuel lean premixed flame could be stabilized with a fuel rich premixed flames that is generated with the supply of fuel through the inner nozzle. The penetration of outer region lean premixture into the fuel stream produced a lifted rich premixed flame at the center. Chemiluminescence images of OH, CH, and $C_2$ radicals indicated that the way of stratification of fuel/air mixture under various operating conditions.

  • PDF

A Study on the Simultaneous Reduction of NOx and Soot with Diesel-Methanol Stratified Injection System in a Diesel Engine (Part II : Combustion and Exhaust Characteristics of Stratified Injection) (층상연료분사(경유/메탄올)를 이용한 디젤엔진의 NOx와 Soot 동시 저감에 관한 연구 (제2보 : 층상분사 연소특성 및 배기 특성))

  • Kang, B.M.;Lee, T.W.;Chung, S.S.;Ha, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.7 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • This paper is study on simultaneous reduction of NOx and soot for direct injection diesel engine using high and low cetane fuels. The stratified injection system was applied for diesel engine to use high and low cetane fuel. In this study, diesel fuel was used as high cetane fuels, methanol was used as low cetane fuels. Some parts of the injection system, ie. Nozzle holder. delivery vale, was remodeled to inject dual fuel sequentially from one injector. The leak injection quantity ratio of dual fuel was certificated by volumetric ratio at injection quantity experiment. According as concentration of low cetane fuel was varied, combustion experiment was performed using Toroidal and Complex chamber. Also, exhaust gas and fuel consumption were measured at the same time. Simultaneous reduction of NOx and soot was achieved at complex chamber regardless of concentration of low cetane fuel. However, according as concentration of low cetane fuel was increased, THC and CO was increased.

  • PDF

An Experimental Study on the Combustion and Emission Characteristics According to the Variation of Compression Ratio and Intake Temperature Using Stratified Charge Compression Ignition in a Gasoline Direct Injection Engine (SCCI 방법을 이용한 직분식 가솔린 엔진내의 압축비 및 흡기 온도 변화에 따른 연소 및 배기 특성에 관한 실험적 연구)

  • Lee Chang-Hee;Lee Ki-Hyung;Lim Kyoung-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.538-545
    • /
    • 2006
  • Stratified charge compression ignition (SCCI) combustion, also known as HCCI(homogeneous charge compression ignition), offers the potential to improve fuel economy and reduce emission. In this study, SCCI combustion was studied in a single cylinder gasoline DI engine, with a direct injection system. We investigated the effects of air-fuel ratio, intake temperature and injection timing such as early injection and late injection on the attainable SCCI combustion region. Injection timing during the intake process was found to be an important parameter that affects the SCCI region width. We also find it. The effects of mixture stratification and fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

A Study on the Stratified Combustion and Stability of a Direct Injection LPG Engine (직접분사식 LPG 엔진의 성층화 연소 및 안정성에 관한 연구)

  • LEE, MINHO;KIM, KIHO;HA, JONGHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.106-113
    • /
    • 2016
  • Lean burn engine, classified into port injection and direct injection, is recognized as a promising way to meet better fuel economy. Especially, LPG direct injection engine is becoming increasingly popular due to their potential for improved fuel economy and emissions. Also, LPDi engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. However, LPDi engine has many difficulties to be solved, such as complexity of injection control mode (fuel injection timing, injection rate), fuel injection pressure, spark timing, unburned hydrocarbon and restricted power. This study is investigated to the influence of spark timing, fuel injection position and fuel injection rate on the combustion stability of LPDi engine. Piston shape is constituted the bowl type piston. The characteristics of combustion is analyzed with the variations of spark timing, fuel injection position and fuel injection rate (early injection, late injection) in a LPDi engine.

Control the Blow-off Characteristics of Lean Premixed Flames Utilizing a Stratified Flame Concept (성층화된 화염을 이용한 희박 예혼합화염의 날림 특성 제어)

  • Lee, Wonnam;Ahn, Taekook;Nam, Younwoo
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.11-20
    • /
    • 2012
  • The Blow-off characteristics of LPG/air lean pre-mixed flames were experimentally investigated using a double and a multiple concentric coflow burners. Experiments were conducted to understand the effects of recirculation motion, thermal interaction between flames, and stratified flame configuration. Here, the stratified premixed flame is a "new concept" of a flame that sequentially contains fuel rich, stoichiometric, and fuel lean reaction zones in a flame. The blow-off from a lean premixed flame was significantly suppressed with recirculation motion. The recirculation motion by itself, however, was not sufficient to prevent the blow-off when the equivalence ratio became low. The existence of a inner premixed flame could also help to prevent the blow-off of lean premixed flame; however, the blow-off suppression effect was rather diminished by weakened recirculation motion with the presence of inner flame. The inner flame could be separated from an outer flame on a multiple concentric coflow burner, causing recirculation motion as well as thermal interaction between flames to become effective; therefore, the blow-off was further suppressed. The lean premixed flame could be stabilized with a fuel rich premixed flames that was produced with the supply of fuel through an inner nozzle. The penetration of lean premixed gas from outside into the fuel stream produced a lifted rich premixed flame. Chemiluminescence images of OH, CH, and $C_2$ radicals confirmed the structure of a stratified premixed flame. The stable premixed flames could be obtained at the very fuel lean condition by applying the stratified premixed flame concept.

Quasi-dimensional Analysis of Combustion and Emissions in a Stratified GDI Engine under Ultra-lean Conditions (유사차원해석 모델을 이용한 초희박 조건에서의 가솔린 직분사 엔진 연소 및 배기 예측)

  • Lee, Jaeseo;Huh, Kang Yul;Kwon, Hyuckmo;Park, Jae In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.402-409
    • /
    • 2015
  • In this study a quasi-dimensional model is developed to predict the combustion process and emissions of a GDI engine under ultra-lean conditions. Combustion of a GDI engine condition is modeled as two simultaneous processes to consider significant fuel stratification. The first process is premixed flame propagation described as burning in a hemispherically propagating flame. The second is diffusion-controlled combustion modeled as mixing of multiple spray zones in the burned gas region. Mixing is an important factor in ultra-lean conditions leaving stratified mixture of developing sprays behind the propagating premixed flame. Sheet breakup and Hiroyasu models are applied to predict the velocity of a hollow cone spray. Validation is performed against measured pressures and NOx and CO emissions at different load and rpm conditions in the test engine.

Numerical Investigations of Turbulent Stratified Premixed Flames (난류 성층 예혼합 화염장의 상세구조 해석)

  • Jeon, Sangtae;Kim, Namsu;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.183-184
    • /
    • 2014
  • The multi-environment probability density function model has been applied to simulate the turbulent stratified premixed flames. The direct quadrature method of moments (DQMOM) has been adopted to solve the transport PDF equation due to its computational efficiency and robustness. Computations are made for the non-swirling turbulent stratified premixed flames including SWB1, SWB5 and SWB9. The numerical results obtained in this study are precisely compared with experimental data in terms of axial velocity, unconditional means and conditional means for scalar field including temperature and species mass fraction.

  • PDF

A Study on the Reduction of Harmful Exhaust Gas with Diesel-Methanol Stratified Injection System in a Diesel Engine (층상연료분사(경유/메탄올)를 이용한 디젤엔진의 유해 배출물 저감에 관한 연구)

  • 강병무;안현찬;이태원;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.43-50
    • /
    • 2002
  • In the present study, reduction of harmful exhaust gas in a diesel engine using stratified injection system of dual fuel (diesel fuel and methanol) was tried. The nozzle and fuel injection pump of conventional injection system were remodeled to inject dual fuel in order from the same injector. The quantity of each fuel was controlled by micrometers, which were mounted at rack of injection pumps. The injection ratio of dual fuel was certificated by volumetric ratio in injection quantity test. Cylinder pressure and exhaust gas were measured and analyzed under various supply condition of duel fuel. We confirmed that combustion of dual fuel was performed successful1y by using modified injection system in a D.I. diesel. Soot and NOx are simultaneously reduced by stratified injection without large deterioration of thermal efficiency, but THC and CO are relatively increased.

A Study on the Spray and Combustion Characteristics of Gasoline Direct Injector (가솔린 직분식 인젝터의 분무 및 연소특성에 관한 연구)

  • 신민규;박종호;유철호;이내현;최규훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.114-122
    • /
    • 1997
  • Nowadays, gasoline direct injection engines are being commercialized by virtue of improvement in control technology of spray, flow, air fuel ratio. The stratified charge type has the advantage of improving lean limit. The homogeneous type has the advantage of reducing engine-out hydrocabon emissions in the first 30 seconds after a cold start, in addition, improving transient air fuel ratio control. The vaporization and mixing if injected fuel with air has to e completed in a short time and the fuel film in cylinder and on piston has to be minimized. So, the flow and injection should be well controlled. This paper surveyed the spray characteristics of gasoline direct injection by using laser equipment and the combustion characteristics of the single cylinder engine using homogeneousas-mixture type gasoline direct injection.

  • PDF