• Title/Summary/Keyword: Stratification strength

Search Result 33, Processing Time 0.059 seconds

Seasonal Variations and Characteristics of the Stratification Depth and Strength in the Seas Near the Korea Peninsular using the Relative Potential Energy Anomaly (한반도 근해의 상대적 위치에너지 편차 변화를 이용한 성층화의 특성과 계절별 변화에 대한 연구)

  • Cho, Chang-Bong;Kim, Young-Gyu;Chang, Kyung-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.205-212
    • /
    • 2011
  • In this paper, we have proposed a method for quantization of the stratification strength in the sea water and analysing the distributions of the maximum stratification depths calculated by the method at the seas near the Korean peninsular. For calculating the stratification strength, modified and applied the potential energy anomaly formular which was suggested by Simpson in 1977. The data had been collected by NFRDI from 1971 to 2008 were used to determine the maximum vertical density gradient depth and the relative potential energy anomaly at that depth. In the East Sea, the stratification depth has become deepened about 20m in February and April since 1971. In Yellow-South Sea, the maximum density gradient depth has been deepened about 10m only in December during the same period and the difference of the stratification depth between summer and winter has been enlarged. These trends of variation of stratification strength and depth near the Korean peninsular should be investigated more carefully and continuously. And the results of these studies could be adopted for the more efficient operation of underwater weapon and detection systems.

Projection of water temperature and stratification strength with climate change in Soyanggang Reservoir in South Korea (기후변화에 따른 소양호 수온 및 성층강도 변화 예측)

  • Yun, Yeojeong;Park, Hyungseok;Chung, Sewoong
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.3
    • /
    • pp.234-247
    • /
    • 2019
  • In a deep lake and reservoir, thermal stratification is of great importance for characteristics of hydrodynamic mixing of the waterbody, and thereby influencesvertical distribution of dissolved oxygen, substances, nutrients, and the phytoplankton community. The purpose of this study, was to project the effect of a future climate change scenario on water temperature, stratification strength, and thermal stability in the Soyanggang Reservoir in the Han River basin of South Korea, using a suite of mathematical models; SWAT, HEC-ResSim, and CE-QUAL-W2(W2). W2 was calibrated with historical data observed 2005-2015. Using climate data generated by HadGEM2-AO with the RCP 4.5 scenario, SWAT predicted daily reservoir inflow 2016-2070, and HEC-ResSim simulated changes in reservoir discharge and water level, based on inflow and reservoir operation rules. Then, W2 was applied, to predict long-term continuous changes of water temperature, in the reservoir. As a result, the upper layer (5 m below water surface) and lower layer (5 m above bottom) water temperatures, were projected to rise $0.0191^{\circ}C/year$(p<0.05) and $0.008^{\circ}C/year$(p<0.05), respectively, in response to projected atmospheric temperature rise rate of $0.0279^{\circ}C/year$(p<0.05). Additionally, with increase of future temperature, stratification strength of the reservoir is projected to be stronger, and the number of the days when temperature difference of the upper layer and the lower layer becomes greater than $5^{\circ}C$, also increase. Increase of water temperature on the surface of the reservoir, affected seasonal growth rate of the algae community. In particular, the growth rate of cyanobacteria increased in spring, and early summer.

The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Coolant Leaking in a T-Branch of Square Cross-Section

  • Choi, Young-Don;Hong, Seok-Woo;Park, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. Standard k-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Leaking Flow in a T-Branch of Square Cross-Section (난류침투가 사각단면 T분기관 내 누설유동에 의해 발생한 열성층 현상에 미치는 영향)

  • 홍석우;최영돈;박민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.239-245
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. $textsc{k}$-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of the main flow in the duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from the main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

An Investigation of a Stratified Charge Mixture's HCCI Combustion Processes Using a Rapid Compression Machine (급속압축장치를 이용한 HCCI기관에서 층상혼합기에 의한 압력상승률의 저감효과에 대한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2010
  • The introduction of mixture heterogeneity has been considered to be one of the ways to avoid knocking, as it reduces the pressure rise rate in HCCI Combustion. The purpose of this research was to investigate the effects of heterogeneity, in particular thermal stratification and fuel strength stratification, on HCCI Combustion fueled with DME and n-Butane. Thermal stratification is formed in the Combustion Chamber of a Rapid Compression Machine with three kinds of pre-mixture, each with different properties. The stratified charge mixture was adiabatically compressed, throughout which cylinder gas pressure and two-dimensional chemiluminescence images were measured and analyzed.

Seasonal Variation of Coastal Front by Numerical Simulation in the Southern Sea of Korea (수치모델을 이용한 한국 남해안 전선의 계절변동)

  • Bae, Sang-Wan;Kim, Dong-Sun
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1141-1149
    • /
    • 2011
  • The three-dimensional hydrodynamic model was simulated to understand coastal sea front of formation and seasonal variation in the Southern Sea of Korea. In this study, we used to concept of stratification factor, to realize seasonal distribution of stratification coefficient which of seasonal residual flow, considered with, tide, wind and density effect. Tidal current tends to flow westward during the flood and eastward during ebb. The current by the wind stress showed to be much stronger the coastal than the offshore area in the surface layer. And the current by the horizontal gradient of water density showed to be relatively weak in the coastal area, with little seasonal differences. On the other hand, the flow in the offshore area showed results similar to that of the Tsushima Warm Current. The stratification factor (SHv) was calculated by taking into account the total flow of tide, wind and density effect. In summer, the calculated SHv distribution ranged from 2.0 to 2.5, similar to that of the coastal sea front. The horizontal temperature gradient showed to be strong during the winter, when the vertical stratification is weak. On the other hand, the horizontal gradient became weak in summer, during which vertical stratification is strong. Therefore, it is presume that the strength of vertical stratification and the horizontal temperature gradient affect the position of the coastal sea front.

Stratification Variation of Summer and Winter in the South Waters of Korea (한국남해의 여름과 겨울철 성층변동)

  • Lee, Chung-Il;Koo, Do-Hyung;Yun, Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.43-50
    • /
    • 2007
  • In order to calculate the strength and to. see the variation af the stratification in the Southern Waters af Korea, the stratification parameter defined as potential energy anomaly (PEA, $V(J/m^3)$) introduced by Simpson and Hunter (1974) was used The data used in this paper were observed in August 1999 and February 2000 by National Fisheries Research and Development Institute (NFRDI). Also to know the effects af the temperature and the salinity an the stratification respectively, averaged temperature and salinity were used in the process af calculation the parameter. V is generally high in the offshore. However, in February, V in the onshore is higher than that of the offshore due to the vertical temperature gradient caused by the expansion of South Korean Coastal Waters (SKCW). In the summer, the increase af the atmospheric heating, the temperature inversion phenomenon act an the stratification as the buoyancy forcing. In most cases, the effects of the temperature on the stratification is stronger than that of the salinity. The temperature effect is predominantly due to the extent af the intrusion of Tsushima Warm Current into the study area. However, at stations where V is high the effect af the salinity is also significant. In the winter, V is very low due to the decrease of the buoyancy forcing, but same stations show the relatively high V due to the expansion of SKCW and Tsushima Warm Current.

  • PDF

Modeling the Effect of Intake Depth on the Thermal Stratification and Outflow Water Temperature of Hapcheon Reservoir (취수 수심이 합천호의 수온성층과 방류 수온에 미치는 영향 모델링)

  • Sun-A Chong;Hye-Ji Kim;Hye-Suk Yi
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.473-487
    • /
    • 2023
  • Korea's multi-purpose dams, which were constructed in the 1970s and 1980s, have a single outlet located near the bottom for hydropower generation. Problems such as freezing damage to crops due to cold water discharge and an increase the foggy days have been raised downstream of some dams. In this study, we analyzed the effect of water intake depth on the reservoir's water temperature stratification structure and outflow temperature targeting Hapcheon Reservoir, where hypolimnetic withdrawal is drawn via a fixed depth outlet. Using AEM3D, a three-dimensional hydrodynamic water quality model, the vertical water temperature distribution of Hapcheon Reservoir was reproduced and the seasonal water temperature stratification structure was analyzed. Simulation periods were wet and dry year to compare and analyze changes in water temperature stratification according to hydrological conditions. In addition, by applying the intake depth change scenario, the effect of water intake depth on the thermal structure was analyzed. As a result of the simulation, it was analyzed that if the hypolimnetic withdrawal is changed to epilimnetic withdrawal, the formation location of the thermocline will decrease by 6.5 m in the wet year and 6.8 m in the dry year, resulting in a shallower water depth. Additionally, the water stability indices, Schmidt Stability Index (SSI) and Buoyancy frequency (N2), were found to increase, resulting in an increase in thermal stratification strength. Changing higher withdrawal elevations, the annual average discharge water temperature increases by 3.5℃ in the wet year and by 5.0℃ in the dry year, which reduces the influence of the downstream river. However, the volume of the low-water temperature layer and the strength of the water temperature stratification within the lake increase, so the water intake depth is a major factor in dam operation for future water quality management.

An Investigation of HCCI Combustion Processes of Stratified Charge Mixture Using Rapid Compression Machine (급속압축 장치를 이용한 불균일 예혼합기가 HCCI연소에 미치는 영향에 관한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.8-14
    • /
    • 2009
  • Effect of heterogeneity of combustion chamber has been thought as one of the way to avoid dramatically generating heat in HCCI Combustion. The purpose of this research is to investigate the effect of heterogeneity, especially thermal stratification and fuel strength stratification on HCCI Combustion fueled with DME and n-Butane. Thermal stratification is formed in Combustion Chamber of Rapid Compression Machine with 3 Kinds of pre-mixture has different properties. The stratified charge mixture is adiabatic compressed and on that process, in cylinder gas pressure and two-dimensional chemiluminescence images are measured and analyzed.

Design of convection current circulation system in reservoir using CFD simulation (CFD모사를 이용한 저수지 물순환장치 유동 설계)

  • Lee, Yosang
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.133-142
    • /
    • 2012
  • Convection Current Circulation System(CCCS) in stratified reservoir controls development of anaerobic condition and algal bloom during summer. In order to increase the CCCS effectiveness, we analyze diverse design parameters to make optimize the flow pattern in reservoir. In this study, we interpret the internal flow with installation and operation condition of CCCS based on CFD in reservoir. Design variables of CCCS is reservoir depth, stratification strength, distance of between CCCS and so on. Since reservoir depth and stratification strength in variables is depending on natural phenomenon, we evaluated current circulation effect by distance of CCCS and proposed the optimal design condition using CFD simulation. Flow and diffusion changes in water body was assessed by temperature and dye test. Changes in water floor temperature at 40m intervals was slowly descending over 37 hours. Dye diffusion simulation at 60m intervals, the radius of the spread between two devices were overlapped after 12 hours.