• Title/Summary/Keyword: Stratification of Concentration

Search Result 121, Processing Time 0.032 seconds

Hypoxia Estimation of Coastal Bay through Estimation of Stratification Degree (성층강도 산정을 통한 내만의 Hypoxia 산정)

  • Jung, Woo-Sung;Lee, Won-Chan;Hong, Sok-Jin;Kim, Jin-Lee;Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.511-525
    • /
    • 2014
  • Goal of this study is estimating of validity of calculated vertical diffusion coefficient for Masan bay is semi-enclosed bay by using eco-hydrodynamic model that is used to analysis of physical structure of coastal waters and calculates the vertical diffusion coefficient. physical structure of coastal waters is calculated by EFDC model, vertical diffusion coefficient calculated as the density gradient is bigger, the vertical diffusion coefficient as density gradient is increases, the vertical diffusion coefficient is decreased. Validity of vertical diffusion coefficient estimated by reproducibility of concentration of dissolved oxygen that calculated in ecosystem model is constructed by Stella program. The Results of model in 2008~2009 were $R^2$ value of 2008 is 0.529~0.700 and $R^2$ value is 0.542~0.791. This results were similar to observed data and simulated to hypoxia at that time. The 'vertical diffusion coefficient' represents stratification and physical stable of a water body, and will be useful for prediction of Hypoxia outbreak.

Variations of Estimated Pollutant Loading from Rural Streams with Sampling Intervals (채수빈도를 고려한 소하천의 수질오염부하량 특성 연구)

  • 강문성;박승우;윤광식
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.552-557
    • /
    • 1998
  • Sampling schemes are intended for use in situations where stream-flow data are collected regularly, but concentration data are collected during only a limited number of time periods. Estimating water pollutant loading considering sampling intervals is presented, and for illustrative purposes the criterion is applied to the sampling station HS#3 of the Balan-reservoir watershed which is located at the southwest of Suwon. The stratification is employed uniformly for all sampling strategies in that the strata boundaries are defined using the actual distribution of flow values and the selected nonexceedence probabilities to minimize inaccuracy. Ratio estimator for SS, T-N, and T-P were used in order to calculate the water pollutant loading. A sampling scheme incorporating stratified sampling with real-time of the sampling characteristics is found to give the appropriate estimate of the mass load.

  • PDF

A Numerical Optimization Study on the Ventilation Flows in a Workshop (작업장 환기장치 최적화 유동 연구)

  • 엄태인;장동순
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.1
    • /
    • pp.64-73
    • /
    • 1995
  • A preliminary study is performed in order to design an effective ventilation equipment for the control of possible pollutants in a workshop. To this end, the Patankar's SIMPLE methodology is used to investigate the flow characteristics of the contaminated thermal deflected jet which is encounted often in practical hood system. SIMPLE-Consistent algorithm is employed for the pressure-velocity coupling appeared in momentum equations. A two equation, k-$\varepsilon$ model is used for Reynolds stresses. The prediction data is compared well against the experimental results by Chang(1989). Considering the control of the wake due to its high turbulence together with the stagnant feature has been investigated in term of major parameters such as temperature and magnitude of the discharge velocity. Detailed discussions are made to reduce the size of the wake region which give rise to pollutant concentration stratification.

  • PDF

A Numerical Study for the Design of Ventilation System for the gaseous Pollutants (기체 유해물질 환기장치 설계를 위한 수치모사)

  • 엄태인
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.77-84
    • /
    • 1994
  • A study is performed in order to design a effective ventilation equipment for the pollutants in workshop. The procedure has been used to calculate the flow in a confined rectangular space channel. A cross free stream is flowed from open space and jet stream including pollutants is injected from bottom area. Calculation results shows a wake region which exists immediarely downstream of the jet discharge and are compared with the experimental data. Calculation data are in good agreement with experimental results. A wake plays an important role on a stagnation of the pollutants. Thus ventilation equipment has to be designed without a stagnation region which give rise to concentration stratification. In this study, calculation parameters are the position and velocity of pollutants and fresh air from cross free stream. It is concluded that more measurements of local velocities, temperatures and concentrations of the pollutants.

  • PDF

The Variations of SMC During Tidal Cycle in Deukryang Bay, Korea (대.소조기변동에 따른 득량만내의 부유퇴적물의 변동 및 분포특성)

  • Lee, Byoung-Gul;Kong, Young-Sae;Cho, Kyu-Dae
    • Journal of Environmental Science International
    • /
    • v.5 no.4
    • /
    • pp.473-479
    • /
    • 1996
  • The temnoral variations of the suspended material concentration (SMC) during spring-neap tidal cycle was investigated at more than 30 stations in Deukryang Bay, Korea, in 1 and 23 July, 1992. The averaged total SMC in spring tide was two times more than those in neap tide. It can be explained that the strong tidal current in spring tide disturbed bottom waters and induced higher SMC in the bay. The areal distributions of SMC for the surface and the bottom layers in the bay shows much different patterns during spring and neap tidal cycle. We concluded that the vertical stratification intensity of water mass is important factor of the horizonatal distribution of SMC in the bay.

  • PDF

Statistical Analysis on Water Quality Characteristics of Large Lakes in Korea (우리나라 주요 호소의 수질특성에 대한 통계적 분석)

  • Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.165-180
    • /
    • 2019
  • Water quality data of 81 lakes in Korea, 2013 ~ 2017 were analyzed. Most water quality parameters showed left-skewed distribution, while dissolved oxygen showed normal distribution. pH and dissolved oxygen showed a positive correlation with organic matter and nutrients, which appeared to be a nonsense correlation mediated by the algae. The ratio of $BOD_5$ and $COD_{Mn}$ to CBOD was 21 % and 52 % in the freshwater lakes, respectively. TOC concentration appeared to be underestimated by the UV digestion method, when salinity exceeds $700{\mu}S\;cm^{-1}$. In terms of nitrogen/phosphorus ratio, the limiting factor for algal growth seemed to be phosphorus in most of the lakes. Chlorophyll ${\alpha}$ increased acutely with decrease of N/P ratio. However, it seemed to be a nonsense correlation mediated by phosphorus concentration, since the N/P ratio depended on phosphorus. The N/P ratio of brackish lakes was lower than that of the freshwater, at the same concentration of phosphorus. It is worth examining denitrification that occurs, in bottom layer and sediment, during saline stratification. $Chl.{\alpha}$ concentration decreased in the form of a power function with increase of mean depth. The primary reason is that deep lakes are mainly at the less-disturbed upstream. However, it is necessary to investigate the effect of sediment, on water quality in shallow lakes. Light attenuation in the upper layer, was dominated by tripton (non-algal suspended solids) absorption/scattering (average relative contribution of 39 %), followed by CDOM (colored dissolved organic matter) (average 37 %) and $Chl.{\alpha}$ (average 21 %).

Simulations of the Effect of Flow Control and Phosphate Loading on the Reduction of Algae Biomass in Gangjeong-Goryong Weir (유량 조절과 인 부하 변동에 따른 강정고령보 조류저감 효과 수치 모의)

  • Park, Dae-Yeon;Kim, Sung-Jin;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.507-524
    • /
    • 2019
  • The purpose of this study was to validate the EFDC model for the weir pool of Gangjeong-Goryong Weir located in Nakdong River, and evaluate the effect of flow control and phosphate loading reduction on the water quality and algae biomass by group (Diatom, Green, Cyanobacteria). As a result of model validation using 2018 experimental data,the time series of water level and vertical distribution of water temperature, DO, organic matter, nitrogen, and phosphorus time series were properly simulated. Seasonal fluctuations of algae biomass by group were adequately reproduced, but the deviations between measured and simulated values were significant in some periods. As a result of scenario simulations to control the water level and flow rate, the thermal stratification was resolved as the water level was lowered and the flow rate increased. The flow velocity at which the water temperature stratification was resolved was about 0.1 m/s, which is consistent with the previous study results of Baekje Weir in Geum River. Simulations of the 2Q flow scenario showed that Chl-a decreased by 8.7% and the cell density of diatom and green algae declined. The cell density of cyanobacteria increased, however, because the high concentrations of cyanobacteria in the upstream boundary conditions directly affected downstream due to increased flow velocity. In the scenario simulation of reducing the influent phosphate load concentration (average 0.056 mg/L) to 50%, Chl-a decreased by 13.6%.The results suggest that the upstream algae concentration and phosphorus load reduction should be considered simultaneously with hydraulic control to prevent algal overgrowth of Gangjeong-Goryong Weir.

The Prediction of Hypoxia Occurrence in Dangdong Bay (당동만의 빈산소 발생 예측)

  • Kang, Hoon;Kwon, Min Sun;You, Sun Jae;Kim, Jong Gu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.65-74
    • /
    • 2020
  • The purpose of this study was to investigate the physical characteristics of marine environment, and to predict the probability of the occurrence of hypoxia in the Dangdong bay. We predicted hypoxia using the logistic regression model analysis by observing the water temperature, salinity, and dissolved oxygen concentration. The analysis showed that the Brunt-Väisälä frequency which was shallow than the deep bay entrance, was higher inside the bay due to a lesser amount of fresh water inflow from the inner side of the bay, and density stratification was formed. The Richardson number, and Brunt-Väisälä frequency were very high occasionally from June to September; however, after September 2, the stratification had a tendency to decrease. Analysis of dissolved oxygen, water temperature, and salinity data observed in Dangdong bay showed that the dissolved oxygen concentration in the bottom layer was mostly affected by the temperature difference (dt) between the surface layer and bottom layer. Meanwhile, when the depth difference (dz) was set as a fixed variable, the probability of the occurrence of hypoxia varied with respect to the difference in water temperature. The depth difference (dz) was calculated to be 5 m, 10 m, 15 m, 20 m, and the difference in water temperature (dt) was found to be greater than 70 % at 8℃, 7℃, 5℃, and 3℃. This indicated that the larger the difference in depth in the bay, the smaller is the temperature difference required for the generation of hypoxia. In particular, the place in the bay, where the water depth dif erence was approximately 20 m, was found to generate hypoxia.

The Long-term Variations of Water Qualities in the Saemangeum Salt-Water Lake after the Sea-dike Construction (방조제 체절이후 새만금호의 장기적인 수질변화)

  • Jeong, Yong Hoon;Yang, Jae Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.51-63
    • /
    • 2015
  • In order to investigation long-term variations of water qualities in the Saemangeum Salt-Water Lake formed after the sea-dike construction, the survey has carried out over 40 time from 2002 to 2010. The decreased salinity in surface water immediately after the dike construction has maintained on equal terms for years. After the dike construction, the early concentration of SPM in surface water has decreased but then it showed the tendency to move up and down due to the changes of water level in the lake. The elevated concentration of Chl-a in surface water initially after the dike construction was kept at the same conditions for years. The concentration of DIN in surface water has not changed before and shortly after the dike construction. However, the concentration of $NH_4-N$ in surface water has increased steadily after the dike construction. Consequently the concentration of DIN in the lake water after years has raised compared to pre-dike construction. The reduced concentration of DIP in surface water soon after the dike construction has increased after years as well as $NH_4-N$ due to the accumulation of organic matter to inside lake. Unlike with the unvaried $NO_3-N$, the concentration of DISi in surface water after the dike construction has immediately increased and maintained the enhanced level indicating the supply from other sources except the freshwater. Since the dike construction, the spatial characteristics of water quality was divided river sides and rest of the lake markedly. Stratification of river sides was more strong than the dike sides. In the warm seasons, hypoxia causing the release of nutrients and metals from sediment was observed downward about 1 m from surface of river sides. We strongly suggest to make some urgent measure to prevent low dissolved oxygen condition in the bottom layer of the river sides.

Large Scale Experiments Simulating Hydrogen Distribution in a Spent Fuel Pool Building During a Hypothetical Fuel Uncovery Accident Scenario

  • Mignot, Guillaume;Paranjape, Sidharth;Paladino, Domenico;Jaeckel, Bernd;Rydl, Adolf
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.881-892
    • /
    • 2016
  • Following the Fukushima accident and its extended station blackout, attention was brought to the importance of the spent fuel pools' (SFPs) behavior in case of a prolonged loss of the cooling system. Since then, many analytical works have been performed to estimate the timing of hypothetical fuel uncovery for various SFP types. Experimentally, however, little was done to investigate issues related to the formation of a flammable gas mixture, distribution, and stratification in the SFP building itself and to some extent assess the capability for the code to correctly predict it. This paper presents the main outcomes of the Experiments on Spent Fuel Pool (ESFP) project carried out under the auspices of Swissnuclear (Framework 2012-2013) in the PANDA facility at the Paul Scherrer Institut in Switzerland. It consists of an experimental investigation focused on hydrogen concentration build-up into a SFP building during a predefined scaled scenario for different venting positions. Tests follow a two-phase scenario. Initially steam is released to mimic the boiling of the pool followed by a helium/steam mixture release to simulate the deterioration of the oxidizing spent fuel. Results shows that while the SFP building would mainly be inerted by the presence of a high concentration of steam, the volume located below the level of the pool in adjacent rooms would maintain a high air content. The interface of the two-gas mixture presents the highest risk of flammability. Additionally, it was observed that the gas mixture could become stagnant leading locally to high hydrogen concentration while steam condenses. Overall, the experiments provide relevant information for the potentially hazardous gas distribution formed in the SFP building and hints on accident management and on eventual retrofitting measures to be implemented in the SFP building.