• Title/Summary/Keyword: Strategy Analysis

Search Result 8,712, Processing Time 0.122 seconds

시뮬레이션 모형에 의한 온실의 열환경 분석 (Analysis of Greenhouse Thermal Environment by Model Simulation)

  • 서원명;윤용철
    • 생물환경조절학회지
    • /
    • 제5권2호
    • /
    • pp.215-235
    • /
    • 1996
  • 본 연구에서 수행한 Model 시뮬레이션에 의한 열환경 분석 기법은 지역별로 다양한 기상여건 하에서 대상온실의 난방 및 냉방부하를 보다 합리적으로 예측할 수 있을 뿐만 아니라 냉방이나 난방용 시스템의 결정을 비롯한 난방대책을 수립하고, 에너지 이용 전략의 수립이나 계절적인 작부계획 수립, 온실산업용 적지선정 등에 유익하게 활용될 수 있을 것이라 판단된다. 본 연구에서는 온실의 적극적인 환경조절 유형을 난방과 냉방의 두 가지로 대별하고, 난방 소요열량 산정을 비롯하여 야간의 보온 커튼효과, Heating Degree-Hour 산정 등 난방과 관련된 시뮬레이션은 동적 모형을 이용하여 시간별, 일별 및 월별로 검토하였으며, 환기를 비롯한 차광, 증발냉각시스템의 효과 분석은 정적모형을 이용하여 검토하였다. 특히 하절기 지하수와 같은 저온수를 직접 이용하거나 Heat Pump를 통하여 확보될 수 있는 저온수를 이용하여 온실의 피복면에 살수함으로서 확보할 수 있는 온실냉방효과를 검토하는 데는 1.2m$\times$2.4m 크기의 모형온실을 제작하여 기초실험을 수행함으로서 동절기의 수막시스템의 보온효과와 마찬가지로 하절기 냉방 효과를 거둘 수 있다는 가능성을 확인하였다. 본 연구에 활용된 온실의 수치 환경모형 중 난방관련 시뮬레이션용 동적 수치모형은 소기의 목적을 달성하는데 충분히 응용될 수 있는 이론모형이다. 이 이론모형이 범용성이 높은 것은 온실 내ㆍ외의 미기상 변화, 특히 난방이나 냉방이 본격적으로 요구되는 기간동안에 온도, 습도, 일사, 풍속 등의 미기상 인자들을 면밀하게 관찰하여 실측된 자료를 바탕으로 개발되었고, 다양한 자료에 의해 충분히 검정되었기 때문이다. 본 연구에서는 경남 진주지역의 어느 특정 기간(1987년)의 시간별 기상자료를 중심으로 온실의 열적 환경변화에 대한 수치모형 시뮬레이션을 실시하였으며, 아직 수치모형에 의한 시뮬레이션이 불가능한 일부 냉방효과를 검토하는 데는 모형 실험을 실시하였으며, 그 결과를 요약하면 다음과 같다. 1. 주간과 야간의 설정온도를 달리하고 다단계 변온조절방식으로 시뮬레이션을 행한 결과 난방 소요열량은 난방 설정온도에 따라 현저한 차이를 보였다. 특히 주간 설정온도에 비하여 야간 설정온도가 난방 소요열량에 예민하게 영향을 미치므로 야간의 설정온도 결정에 신중을 기해야 할 것으로 판단된다. 2. 기존의 Heating Degree-Hour 자료는 평균 외기온을 중심으로 임의의 설정온도에 대하여 산정된 값이므로 난방 소요열량에 대한 상대적인 비교수단은 되나 고려되는 기상인자의 제한과 설정온도의 임의성 때문에 실용성이 부족하다. 따라서 본 연구에서 제시된 것처럼 온실 주변의 제반 미기상 인자나 경계조건이 반영됨은 물론 작물의 생육상태 및 구체적인 설정온도까지도 고려하는 동적 수치모형으로 시시각각으로 예측된 실내기온을 중심으로 재배기간 동안의 난방열량을 적산함이 합리적이라 판단된다. 기존의 MDH 자료로 난방 설계를 할 경우에는 지나치게 과잉설계 될 가능성이 있다. 3. 산정된 난방 소요열량은 물론 커튼의 보온성능도 월별 기상여건에 따라 현저한 차이를 보이며, 시뮬레이션에 이용된 커튼의 경우 높은 보온효과를 보임으로서 년 평균 50% 이상의 난방 에너지를 절감할 수 있으며, 동절기 3-4개월의 집중 난방기에 에너지가 크게 절감됨을 발견할 수 있다. 4. 고온기 환기성능은 온실의 구조, 기상조건, 작물의 생육상태 등에 따라 다소의 차이가 있으나 환기율에 의해 크게 좌우되며, 시뮬레이션에 이용된 두 가지 농가보급형 온실 모두 환기율의 증가에 따른 실내기온의 강하 효과가 환기율이 1회/min 정도를 넘어서면서 급격히 둔화되는 현상을 보인다. 이는 기존에 권장되고 있는 적정 환기율인 1회/min 전후의 환기 시스템을 갖추는 것이 합리적임을 확인해 준다. 5. 작물이 성숙된 유리온실에서 외기의 상대습도가 50%인 쾌청한 주간동안 연속적으로 1회/min로 환기를 시킬 경우 실내기온 36.5$^{\circ}C$의 대조구에 비한 온도강하는 50% 차광만 했을 시 2.6$^{\circ}C$이고 효율 80%의 Pad & Fan 시스템만 작동시 6.1$^{\circ}C$ 정도이며, 차광과 냉각시스템을 동시에 작동시는 약 8.6$^{\circ}C$로서 외기온보다 3.3$^{\circ}C$가 낮은 28$^{\circ}C$까지 실내온도를 낮출 수 있으나, 동일 조건하에서 외기의 상대습도가 80%로 높은 경우에는 Pad & Fan시스템에 의한 온도강하가 2.4$^{\circ}C$에 불과하여 50% 차광하에서도 외기온 이하로 실내온도를 낮출 수 없음을 알 수 있다. 6. 하절기 3개월(6/1-8/31)동안 Pad & Fan 시스템의 냉방효과($\Delta$T)는 설정된 작동 온도에 따라 다소 차이를 보일 것으로 예상되나 본 시뮬레이션에서 설정한 시스템의 작동 온도 27$^{\circ}C$에서 상대습도와의 상관관계는 대략 다음과 같았다: $\Delta$T= -0.077RH+7.7 7. 전형적인 하절기 주간기상 하에서 경시적 냉방효과를 분석한 결과 환기만으로는 실내기온을 외기온 보다 5$^{\circ}C$ 높게 유지하는 정도가 고작이고, 차광이나 증발식 냉방시스템 만으로는 작물이 성숙한 단계에서조차도 외기온 이하로 떨어뜨리기가 어려우나 차광과 아울러 증발식 냉방을 병행할 경우에는 작물상태에 따라 다소 차이는 있지만 실내기온을 외기온보다 2.0-2.3$^{\circ}C$ 낮게 유지할 수 있음을 발견할 수 있다. 8. 일사가 차단된 27.5-28.5$^{\circ}C$의 외기온하에서 6.5-8.5$^{\circ}C$의 냉수를 온실 바닥면적 1$m^2$당 1.3 liter/min의 유량으로 온실표면에 살수했을 때 실내기온을 외기온보다 1$0^{\circ}C$ 낮은 16.5-18.$0^{\circ}C$ 정도로 낮출 수 있었다. 앞으로 살수 수온(T$_{w}$ )이나 외기온(T$_{o}$ ) 뿐만아니라 살수율(Q)에 따라 온실기온 (T$_{g}$ )에 미치는 상관 관계 T$_{g}$ = f(T$_{w}$ , Q, T$_{o}$ )를 구명하여 지하수 자체 또는 Heat Pump를 이용한 지하수온 이하의 냉수로 온실냉방의 가능성을 구명하는 것이 앞으로의 과제이다.

  • PDF

시스템분석(分析)에 의(依)한 삼림수확조절(森林收穫調節)에 관(關)한 연구(硏究) (A Study on the Forest Yield Regulation by Systems Analysis)

  • 조응혁
    • 농업과학연구
    • /
    • 제4권2호
    • /
    • pp.344-390
    • /
    • 1977
  • 본(本) 연구(硏究)는 계획기간내(計劃期間內)의 재적수확량(材積收穫量)을 최대화(最大化)하고 각분기(各分期)의 수확량(收穫量)과 수확면적(收穫面積)을 일정(一定) 범위(範圍)로 제약(制約)하여 계획기간내(計劃期間內)의 보속수확(保續收穫)을 도모(圖謀)하는 동시(同時)에 후계림(後繼林)의 법정영급배치(法正令級配置)가 유도(誘導)될 수 있는 적정수확안(適正收穫案)을 선형계획법(線型計劃法)에 의하여 선정(選定)하고, 제약량(制約量)의 변화(變化)가 총수확량(總收穫量) 및 분기별(分期別) 수확량(收穫量)과 수확면적(收穫面積)에 미치는 영향(影響)을 구명(究明)하는데 목적(目的)이 있다. 서울 대학교(大學校) 농과대학(農科大學) 부속연습림중(附屬演習林中) 개벌작업급(皆伐作業級)에 속하는 219개(個) 소반(小班)을 대상(對象)으로 하였으며, 이 삼림(森林)은 영급구성면(令級構成面)에서 볼 때 유영급(幼令級) 임분(林分)이 많다는 점(點)에서 전국(全國) 삼림(森林)을 대표(代表)한다고 할 수 있다. 본(本) 연구(硏究)에서는 한 분기년수(分期年數)를 5년(年), 계획기간(計劃期間)을 10분기(分期), 1영급(令級)을 5영개(令皆)로 하였으며, 벌채영급(伐採令級)의 범위(範圍)는 5~9영급(令級)이다. 한편, 후계림(後繼林)은 현실림(現實林)이 수확(收穫)되는 즉시 조림(造林)되고, 미립목지(未立木地)는 1분기내(分期內)에 조림(造林)되며 다음 벌기(伐期)까지 충분(充分)한 입목도(立木度)가 이루어지는 것으로 전제(前提)하였다. 소반(小班)을 벌구(伐區)로 하여, 각벌구(各伐區)가 계획기간내(計劃期間內)에 벌채(伐採)될 수 있는 모든 가능(可能)한 대체수확안(代替收穫案)을 그의 영급(令級)에 따라 작성(作成)하고, 여기에 현실림(現實林)과 후계림(後繼林)의 벌기예상수확량(伐期豫想收穫量)을 대입(代入)하여 각대체안(各代替案)의 계획(計劃) 기간내(期間內) 수확량(收穫量)($V_{i,\;k}$)을 산정(算定)하였다. 이때 각벌구(各伐區)의 벌기예상수확량(伐期豫想收穫量)은 기존(旣存) 임분수확표(林分收穫表)와 산림조사부(山林調査簿) 자료(資料)를 이용(利用)하는 범위내(範圍內)에서 추정(推定)하였으며, 각벌구(各伐區)에 소속(所屬)되는 대체수확안중(代替收穫案中)에서 $V_{i,\;k}$가 가장 큰 수확안(收穫案)을 적정수확안(適正收穫案)으로 선정(選定)하였다. 우선 제약조건(制約條件)이 없을 때의 적정수확안(適正收穫案)을 선정(選定)하여 분기별(分期別) 수확량(收穫量)과 수확면적(收穫面積), 총수확량(總收穫量)을 계산(計算)한 다음, 이를 기준(基準)으로 하여 분기별(分期別) 수확량(收穫量)의 상한(上限)($V_{j-max}$)과 하한(下限)($V_{j-min}$) 및 수확면적(收穫面積)의 상한(上限)($A_{j-max}$)과 하한(下限)($A_{j-min}$)을 결정(決定)하였다. 이러한 여러가지 제약조건하(制約條件下)의 적정수확안(適正收穫案)은 LP수확조절(收穫調節)모델을 유도(誘導)하여 선정(選定)하였으며, 제약조건(制約條件) 및 벌채영급범위(伐採令級範圍)의 변화(變化)가 총수확량(總收穫量)에 미치는 영향(影響)을 분석(分析)하고자 감응도분석(感應度分析)을 실시(實施)하였다. 본(本) 연구(硏究) 결과(結果)를 요약(要約)하면 다음과 같다. 1. 제약조건(制約條件) 없이 적정수확안(適正收穫案)을 선정(選定)한 결과(結果), 수확면적(收穫面積)이 분기별(分期別)로 큰 차이(差異)를 보였다. 즉, 총수확량(總收穫量)의 68.8%가 10분기(分期)에 편재(偏在)되어 있고 6~7분기(分期)에는 전(全)혀 수확량(收穫量)이 없으며, 분기별(分期別) 수확면적(收穫面積)도 이와 유사(類似)한 경향(傾向)을 보였다. 이와 같이 분기별(分期別) 수확량(收穫量) 및 수확면적(收穫面積)에 차이(差異)가 많은 것은 현실림(現實林)의 영급구성(令級構成)과 입목축적(立木蓄積)이 대단히 불규칙(不規則)하기 때문이다. 2. 수확량(收穫量)과 수확면적(收穫面積)의 분기별(分期別) 변동폭(變動幅)을 줄이면서 계획기간내(計劃期間內)의 재적수확량(材積收穫量)을 최대화(最大化)하고자, LP수확조절(收穫調節) 모델에 의하여 $A_{min}=150ha$ $A_{max}=400ha$, $V_{min}=5,000m^3$, $V_{max}=50,000m^3$일 때의 적정수확안(適正收穫案)을 선정(選定)한 결과(結果), 대체(大體)로 5분기(分期) 이후(以後)부터 보속수확(保續收穫)과 법정영급배치(法正令級配置)가 가능(可能)하게 되었다. 3. LP수확조절(收穫調節)모델에 간벌계획(間伐計劃)을 포함(包含)시켜 최적해(最適解)를 구(求)하면, 총수확량(總收穫量)이 증가(增加)함은 물론, 간벌계획(間伐計劃)을 포함(包含)시키지 않았을 경우(境遇)에 비하여 분기별(分期別) 보속수확(保續收穫)의 실현(實現)에 유리(有利)한 적정수확안(適正收穫案)을 선정(選定)해 주는 효과(效果)가 있다. 4. 보속수확(保續收穫)과 법정영급배치(法正令級配置)가 실현(實現)될 수 있는 시기(時期)는 제약량(制約量)의 강도(强度)가 높아짐에 따라서 빨라지며, 분기별(分期別) 수확량(收穫量)은 수확면적(收穫面積)에 비하여 제약량(制約量)의 변화(變化)에 따른 평준화(平準化) 경향(傾向)이 뚜렷하고, 분기별(分期別) 수확량(收穫量)의 평준화(平準化)가 이루어지면 분기별(分期別) 수확면적(收穫面積)은 이에 종속(從屬)되어 평준화(平準化)하는 경향(傾向)이 있다. 5. 제약조건(制約條件)의 강도(强度)가 높아짐에 따라 총수확량(總收穫量)은 점감적(漸減的)으로 감소(減少)하므로 빠른 시기(時期)에 엄정보속(嚴正保續)과 엄정영급배치(嚴正令級配置)를 의도(意圖)할 수록 총수확량(總收穫量)의 손실(損失)은 그만큼 더 증가(增加)한다. 6. 같은 계획기간(計劃期間) 및 제약조건하(制約條件下)에서의 총수확량(總收穫量)은 벌채영급(伐採令級)을 낮추고, 그 범위(範圍)를 넓힐수록 증가(增加)한다. 또한 벌채영급(伐採令級) 범위(範圍)의 상한(上限)을 고정(固定)하고, 그 하한(下限)을 1영급(令級)씩 높였을 때에 총수확량(總收穫量)이 감소(減少)되는 속도(速度)는, 그 범위(範圍)의 하한(下限)을 고정(固定)하고 상한(上限)을 1영급(令級)씩 낮추었을 때의 감소(減少) 속도(速度)보다 크다. 7. 본(本) 연구(硏究)에 제시(提示)된 LP수확조절(收穫調節)모델은 영급구성(令級構成)이 복잡(複雜)한 임분(林分)에 적용(適用) 가능(可能)하며, 간벌계획(間伐計劃)을 간단히 포함(包含)시킬 수 있고, 제약량(制約量)의 변화(變化)에 따른 총수확량(總收穫量)의 손실(損失)을 쉽게 계측(計測)할 수 있는 등 여러가지 장점(長點)이 있으므로, 우리나라의 현행(現行) 삼림수확조절법(森林收穫調節法)을 보완(補完)하기 위해서도 이 기법(技法)이 유효(有效)하게 이용(利用)될 수 있을 것으로 보인다.

  • PDF