• Title/Summary/Keyword: Strain-tolerant behavior

Search Result 5, Processing Time 0.019 seconds

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

Contact Damage and Strength Degradation of Yttria doped Tetragonal Zirconia Polycrystal (Y$_2$O$_3$ 를 첨가한 정방정 지르코니아에서의 접촉손상 및 강도저하)

  • 정연길;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.429-436
    • /
    • 1998
  • The mechanical properties and damage mode of {{{{ {Y}_{2 } {O}_{3} }}-doped tetragonal (Y-TZP) can-didated as biomaterials were performed under indentation stress-strain curve critical load for yield and cracking strength degradation and fatigue behavior with Hertzian indentation tests. This material shows the brittle behavior which is confirmed by indentation stress-strain response. The critical load for cracking(Pc) is much higher than that for yields (Py) indicating crack resistance Strength were strongly dependant on contact area and there were no degradation when the indenter size was ${\gamma}$=3.18 mm suggesting that Y-TZP should be highly damage tolerant to the blunt contacts. Multi-cycle contact were found to be innocuous up to {{{{ {10 }^{6 } }} cycles at 500N and {{{{ {10 }^{5 } }} cycles at 1000N in water. On the other hand contacts at {{{{ {10 }^{6 } }} cycles at 1000 N in water did show some signs of incipient degradation. By contrast contacts with Vickers indenter pro-duced substantial strength losses at much lower loads suggesting that the mechanical integrity of this ma-terial would be compromised by inadvertent sharp contacts.

  • PDF

A Study on Glass-Infiltrated Alumina and Spinel Composite I. Effect of Microstructure and Glass Content on Contant Damage and Strength (유리침윤 알루미나 및 스핀넬 복합체에 관한 연구 I. 미세구조 및 유리함량이 접촉손상 및 강동에 미치는 영향)

  • 정연길;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.7
    • /
    • pp.671-678
    • /
    • 1998
  • Hertzian indentation tests with sphere indenters were used to study the mechanical properties of glass-in-filtrated alumina and spinel composites and evaluated the effect of preform microstructure and evaluated the effect of preform microstructure and glass con-tents on contanct damage and strength. The spinel composite showed more brittle behavior than the alumina composite which is verified from indentation stress-strain curve cone cracks and quasi-plastic deformation developed at subsurface. Failure originated from either cone cracks(brittle mode) or deformation zone(quasi-plastic mode) above critical load for cracking(Pc) and yield ({{{{ {P }_{Y } }}) with the brittle mode more dominant in the spinels and the quasi-plastic mode more dominant in the aluminas. Even though brittle mode was dominant in the spinel composites the strength degradation from accumulation of damage above these critical loads was conspicuously small suggesting that the glass-infiltrated composites should be highly damage tolerant to the blunt contacts.

  • PDF

Fabrication of Porous SiC Ceramics by Partial Sintering and their Properties (부분소결공정에 의한 다공질 탄화규소 세라믹스의 제조 및 특성)

  • 김신한;김영욱;윤중열;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.541-547
    • /
    • 2004
  • Addition of large particles restrains densification by small particles in mixed particle systems. In the present study, large SiC whiskers or particles were introduced into small particles for restraining densification and the mixtures were sintered using yttrium aluminum garnet (Y$_3$A1$\sub$5/O$\sub$12/, YAG) as a sintering additive. By controlling the content of large SiC whiskers or particles and the applied pressure during sintering, porous SiC ceramics, with a porosity ranging from 0.3% to 39%, were fabricated. Porosity increased with increasing the content of restraining materials. SiC whiskers were more effective than large SiC partcles for restraining densification. Permeability of the porous SiC ceramics increased with increasing the porosity. Flexural strength decreased with increasing porosity. A noticeable increase in strain to failure was observed in the porous ceramics with a porosity ranging from 18% to 39%.

Finite Element Analysis of Pilgering Process of Multi-Metallic Layer Composite Fuel Cladding (다중금속복합층 핵연료 피복관의 필거링 공정에 관한 유한 요소 해석 연구)

  • Kim, Taeyong;Lee, Jeonghyeon;Kim, Ji Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • In severe accident conditions of light water reactors, the loss of coolant may cause problems in integrity of zirconium fuel cladding. Under the condition of the loss of coolant, the zirconium fuel cladding can be exposed to high temperature steam and reacted with them by producing of hydrogen, which is caused by the failure in oxidation resistance of zirconium cladding materials during the loss of coolant accident scenarios. In order to avoid these problems, we develop a multi-metallic layered composite (MMLC) fuel cladding which compromises between the neutronic advantages of zirconium-based alloys and the accident-tolerance of non-zirconium-based metallic materials. Cold pilgering process is a common tube manufacturing process, which is complex material forming operation in highly non-steady state, where the materials undergo a long series of deformation resulting in both diameter and thickness reduction. During the cold pilgering process, MMLC claddings need to reduce the outside diameter and wall thickness. However, multi-layers of the tube are expected to occur different deformation processes because each layer has different mechanical properties. To improve the utilization of the pilgering process, 3-dimensional computational analyses have been made using a finite element modeling technique. We also analyze the dimensional change, strain and stress distribution at MMLC tube by considering the behavior of rolls such as stroke rate and feed rate.