• Title/Summary/Keyword: Strain recovery

Search Result 280, Processing Time 0.024 seconds

Nylon 66의 무비례 하중에 대한 과응력 모델 (An Overstress Model for Non-proportional Loading of Nylon 66)

  • 호광수
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2056-2061
    • /
    • 2001
  • Non-proportional loading tests of Nylon 66 at room temperature exhibit path dependent behavior and plasticity-relaxation interactions. The uniaxial formulation of the viscoplasticity theory based on overstress (VBO), which has been used to reproduce the nonlinear strain rate sensitivity, relaxation, significant recovery and cyclic softening behaviors of Nylon 66, is extended to three-dimensions to predict the response in strain-controlled, comer-path tests. VBO consists of a flow law that is easily written for either the stress or the strain as the independent variable. The flow law depends on the overstress, the difference between the stress and the equilibrium stress that is a state variable in VBO. The evolution law of the equilibrium stress in turn contains two additional state variables, the kinematic stress and the isotropic stress. The simulations show that the constitutive model is competent at modeling the deformation behavior of Nylon 66 and other solid polymers.

온간 단조기에서의 소성변형과 결정입자 변화와의 관계 (Study on the relationship between Plastic Deformation and Crystal Grain Change in Warm Forging)

  • 이해영;제진수;강성수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 제2회 단조심포지엄 단조기술의 진보
    • /
    • pp.100-123
    • /
    • 1995
  • The relationship between plastic deformation and crystal grain change in warm forging processes of SM100 carbon steel is studied. If the carbon steel is deformed in warm forging temperature (about recrystallization range), the crystal grain and cementite of the internal part are changed, so material properties are changed. Some experimental values, such as the elliptic degree of cementite, the grain size of cementitie and ferrite grain size, are investigated. When the plastic deformation proceeds, the elliptic degree of cementite becomes large, the grain size of cementite particle is small, and the size of ferrite grain appears fine by recrystallization. The elliptic degree of cementite has a considerable effect on formability. The distribution of effective strain in the forging is calculated by the rigid visco-plastic FEM analysis. The effective strain distribution obtained from the FEM simulation is compared with the experimental result. At effective strain 0.3 dynamic recovery and dynamic recrystallization begin, over 2.5 the organization of material has better quality that is suitable for the following cold forming.

Stressed-Arch 시스템의 시공 과정 해석에 관한 연구 (A Study on the Analysis of Construction Process for the Stressed-Arch System)

  • 김종범;윤종현;이경수;한상을
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2001년도 학술논문발표회
    • /
    • pp.118-123
    • /
    • 2001
  • The objectives of this research are to verify the structural stability and estimate the resisting performance of Stressed-Arch system during the construction process. Full scale models are taken to obtain the objective shape by the Dynamic Relaxation Method. As a result, it measured more strain than yielding strain at the extreme fiber of top chord member on the crown, but it is shown that members have the sufficiently compressive resisting performance as well as a considerable strain recovery capacity under unloading. Therefore, it is confirmed that Stressed-Arch system apparently have sufficient range of the structural capacity, but it is required that the elasto-plastic behavior of this system must be verified more detailed by numerical analysis and experiments.

  • PDF

Strong formulation finite element method for arbitrarily shaped laminated plates - Part I. Theoretical analysis

  • Fantuzzi, Nicholas;Tornabene, Francesco
    • Advances in aircraft and spacecraft science
    • /
    • 제1권2호
    • /
    • pp.125-143
    • /
    • 2014
  • This paper provides a new technique for solving the static analysis of arbitrarily shaped composite plates by using Strong Formulation Finite Element Method (SFEM). Several papers in literature by the authors have presented the proposed technique as an extension of the classic Generalized Differential Quadrature (GDQ) procedure. The present methodology joins the high accuracy of the strong formulation with the versatility of the well-known Finite Element Method (FEM). The continuity conditions among the elements is carried out by the compatibility or continuity conditions. The mapping technique is used to transform both the governing differential equations and the compatibility conditions between two adjacent sub-domains into the regular master element in the computational space. The numerical implementation of the global algebraic system obtained by the technique at issue is easy and straightforward. The main novelty of this paper is the application of the stress and strain recovery once the displacement parameters are evaluated. Computer investigations concerning a large number of composite plates have been carried out. SFEM results are compared with those presented in literature and a perfect agreement is observed.

Investigation of Fluorescent Shape Memory Polyurethanes Grafted with Various Dyes

  • Chung, Yong-Chan;Choi, Jae-Won;Lee, Seung-Hwan;Chun, Byoung-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권spc8호
    • /
    • pp.2988-2996
    • /
    • 2011
  • Shape memory polyurethane (SMPU), grafted with a fluorescent dye (Rhodamine, Mehylene violet, or Fluorescein) through an allophanate linking, was tested for the fluorescence and the shape recovery effect. The main chain of SMPU was composed of 4,4'-methylenebis(phenylisocyanate) (MDI), poly(tetramethyleneglycol) (PTMG), and 1,4-butanediol (BD), and a fluorescent dye was connected through a second MDI linked to the carbamate moiety of the main chain. Three series of SMPU, differing according to their dye content, were prepared to compare their shape recovery and fluorescence properties. In tensile mechanical property, maximum stress increased up to 350% compared to the linear SMPU, and strain remained above 2000%. Shape recovery went to as high as 97%, and remained almost same after repetitive shape recovery test cycles. Finally, the fluorescence emission of SMPU was demonstrated in the luminescence spectrum and fluorescent light emission pictures. In addition, the response of SMPU to external stimuli such as metal ions was investigated.

Morphological Variation and Recovery Mechanism of Residual Crude Oil by Biosurfactant from Indigenous Bacteria: Macro- and Pore-Scale Experimental Investigations

  • Song, Zhi-Yong;Han, Hong-Yan;Zhu, Wei-Yao
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권6호
    • /
    • pp.918-929
    • /
    • 2015
  • Microbial enhanced oil recovery (MEOR) is being used more widely, and the biological contributions involved in MEOR need to be identified and quantified for the improvement of field applications. Owing to the excellent interfacial activity and the wide distribution of producing strains in oil reservoirs, lipopeptides have proved to be an essential part of the complex mechanisms in MEOR. In this study, crude lipopeptides were produced by a strain isolated from an indigenous community in an oil reservoir. It was found that crude lipopeptides can effectively reduce the IFT (interfacial tension) to 10-1~10-2 mN/m under high salinity without forming stable emulsions, and the wettability of natural sandstone can be enhanced (Amott index, from 0.36 to 0.48). The results of core flooding experiments indicate that an additional 5.2% of original oil in place can be recovered with a 9.5% reduction of injection pressure. After the shut-in period, the wettability of the core, the reduction of injection pressure, and the oil recovery can be improved to 0.63, 16.2% and 9.6%, respectively. In the microscopic flooding experiments, the crude oil in membrane, cluster, and throat states contribute nearly 90% in total of the additional oil recovery, and the recovery of membranestate oil was significantly enhanced by 93.3% after shut in. Based on the results in macro and pore scale, the IFT reduction and the wettability alteration are considered primary contributors to oil recovery, while the latter was more dominant after one shut-in period.

Effects of Clothing Material Dyed with Astringent Persimmon Extract upon Exercise-Induced Thermal Strain and Sensory Responses in a Warm Environment

  • Park, Shin-Jung;Shin, Hye-Sun;Chung, Hee-Chung
    • International Journal of Human Ecology
    • /
    • 제16권2호
    • /
    • pp.1-9
    • /
    • 2015
  • This study investigated the effects of persimmon-dyed clothing materials upon thermophysiological responses and subjective comfort sensations during exercise and rest in a warm environment. Six healthy, untrained women participated in two separate testing sessions, with cotton materials dyed with astringent persimmon extract (DC) and undyed cotton materials (UDC). The physical characteristics associated with heat and moisture transfer were improved in DC; also, stiffness, anti-drapery stiffness and crispness in the primary hand values were higher in DC. The experimental protocol consisted of a 10-min rest, 15-min exercise on a treadmill (at ${7km{\cdot}h^{-1}}$) and 25-min recovery at $28{\pm}0.2^{\circ}C$ and $50{\pm}3%\;RH$. The results were as follows: When wearing DC rather than UDC, mean body temperature, heart rate, heat storage and body mass loss were significantly lower during the whole experimental period. Clothing microclimate temperature showed different profiles between the two clothing materials, being lower with DC than UDC during the first half of exercise and the second half of recovery. Clothing microclimate humidity was significantly lower with DC than UDC during the whole experimental period. When wearing UDC, subjects felt significantly warmer and less comfortable during exercise, and sensed greater humidity during exercise and recovery. These results suggest that eco-friendly clothing materials dyed with astringent persimmon extract can reduce exercise-induced heat load and improve subjective sensations when exercising and resting in a warm environment, due to greater heat dissipation from the body to the outside environment compared with undyed clothing materials.

Comparison of Virulence between Five Strains of Cryptococcus Species Complex in a Rat Model

  • Park, Gyu-Nam;Kim, Sun-Young;Kim, Hye-Ran;Jung, Bo-Kyung;An, Dong-Jun;Hong, Seung-Bok;Chang, Kyung-Soo
    • 대한의생명과학회지
    • /
    • 제24권3호
    • /
    • pp.183-195
    • /
    • 2018
  • Cryptococcosis, which is caused by the Cryptococcus species complex (including Cryptococcus neoformans and Cryptococcus gattii), is well known as one of the most important medical problems. However, the of the Cryptococcus species complex is still limited to pneumonia and meningitis. In particular, the differences in virulence among the five major serotypes of the Cryptococcus species complex are not fully understood. To elucidate the virulence of the Cryptococcus species complex when it is disseminated hematogenously, rats were infected by different strains of the Cryptococcus species serotype, and their histopathological characteristics were compared after infection. The cumulative mortality ratio of rats infected with serotype B strain was slightly higher than in the other experimental groups. In addition, the average recovery of the Cryptococcus species complex from rats infected with serotype B strain was significantly higher than in the other groups in almost all organ samples except spleen. The recovery of the Cryptococcus species complex was associated with the severity of histopathological lesions, including bleeding, inflammation, and tissue damage in all organs. In rats infected with serotype B strain, the virulence was the most severe, especially in the lungs and liver. These results indicate that the pathophysiology of the Cryptococcus species complex infection differs according to serotype.

RH-DMA를 적용한 PET 필름의 장기 점탄성 성능 예측 (Prediction of Long-term Viscoelastic Performance of PET Film Using RH-DMA)

  • 최순호;윤성호
    • Composites Research
    • /
    • 제32권6호
    • /
    • pp.382-387
    • /
    • 2019
  • 상대습도와 온도가 PET 필름의 점탄성 특성에 미치는 영향을 조사하기 위해 RH-DMA를 이용하여 single frequency strain mode 시험, stress relaxation mode 시험, creep 시험을 수행하였다. 상대습도는 10%, 30%, 50%, 70%, 90%를 적용하고 온도는 single frequency strain mode 시험의 경우 30~95℃, stress relaxation mode 시험의 경우 30℃ 와 70℃, creep 시험의 경우 5~95℃를 고려하였다. 연구결과에 따르면 상대습도가 높아지면 저장탄성계수와 손실탄성계수는 낮아지며 손실탄성계수의 최대값은 상대습도의 변화에 큰 영향을 받지 않고 거의 일정해진다. 이완탄성계수는 초기에 급격히 감소하다가 일정한 값을 가지며 높은 온도에서는 상대습도의 변화에 민감해진다. 변형률 회복는 초기에 급격히 증가하며 온도가 높아지면 이완 탄성계수와 마찬가지로 상대습도에 민감하게 변한다. 크리프 컴플라이언스의 증가 정도는 온도가 높아지면 커지며 유리전이온도보다 온도가 높아지면 증가 정도는 더욱 커진다. 시간-온도 중첩법을 통해 구해지는 마스터 선도를 이용하면 상대습도와 온도 등의 운용 조건에서의 장기 성능을 예측할 수 있는 정보를 얻을 수 있다.

High Temperature Deformation Behavior of SiCp/2124Al Metal Matrix Composites

  • Tian, Y.Z.;Cha, Seung I.;Hong, Soon H.
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.69-72
    • /
    • 2002
  • The high temperature deformation behavior of SiCp/2124Al composite and 2124Al alloy was investigated by hot compression test in a temperature ranged $400~475^{\circ}C$ over a strain rate ranged $10^{-3}~1s^{-1}$. The billets of 2124Al alloy and SiCp/2124Al composite were fabricated by vacuum hot pressing process. The stress-strain curve during high temperature deformation exhibited a peak stress, and then the flow stress decreased gradually into a steady state stress with increasing the strain. It was found that the flow-softening behavior was attributed to the dynamic recovery, local dynamic recrystallization and dynamic precipitation during the deformation. The precipitation phases were identified as S' and S by TEM diffraction pattern. Base on the TEM inspection, the relationship between the Z-H parameter and subgrain size was found based on the experiment data. The dependence of flow stress on temperature and strain rate could be formulated well by a hyperbolic-sinusoidal relationship using the Zener-Hollomon parameter.

  • PDF