• 제목/요약/키워드: Strain point

검색결과 843건 처리시간 0.022초

Determination of true stress-strain curve of type 304 and 316 stainless steels using a typical tensile test and finite element analysis

  • Kweon, Hyeong Do;Kim, Jin Weon;Song, Ohseop;Oh, Dongho
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.647-656
    • /
    • 2021
  • Knowing a material's true stress-strain curve is essential for performing a nonlinear finite element analysis to solve an elastoplastic problem. This study presents a simple methodology to determine the true stress-strain curve of type 304 and 316 austenitic stainless steels in the full range of strain from a typical tensile test. Before necking, the true stress and strain values are directly converted from engineering stress and strain data, respectively. After necking, a true stress-strain equation is determined by iteratively conducting finite element analysis using three pieces of information at the necking and the fracture points. The Hockett-Sherby equation is proposed as an optimal stress-strain model in a non-uniform deformation region. The application to the stainless steel under different temperatures and loading conditions verifies that the strain hardening behavior of the material is adequately described by the determined equation, and the estimated engineering stress-strain curves are in good agreement with those of experiments. The presented method is intrinsically simple to use and reduces iterations because it does not require much experimental effort and adopts the approach of determining the stress-strain equation instead of correcting the individual stress at each strain point.

변형률 모드시험법 특성의 실험적 고찰 및 응용 (Experimental Study on Characteristics of Strain Modal Testing and its Application)

  • 주영삼;이형석;이건명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.519-524
    • /
    • 2000
  • The types of responses which are generally measured in the modal testing are displacement, velocity or acceleration. In strain modal testing, however, strain responses subject to excitation forces are measured. In this paper, the characteristics of strain modal testing are investigated experimentally. Investigated are the effects of frequency range, excitation force level, and excitation signal on the quality of measured strain frequency response functions. It has been shown that a strain FRF at a point can be predicted from displacement FRFs and strain FRFs at other points.

  • PDF

Al 6061 합금의 고온 소성변형 조건의 예측 (Prediction of High Temperature Plastic Deformation Variables on Al 6061 Alloy)

  • 김성일;정태성;유연철;오수익
    • 소성∙가공
    • /
    • 제8권6호
    • /
    • pp.576-582
    • /
    • 1999
  • The high temperature behavior of Al 6061 alloy was characterized by the hot torsion test in the temperature ranges of 400∼550℃ and the strain rate ranges of 0.05∼5/sec. To decide optimum deformation condition, three types of deformation maps were individually made from the critical strain (εc). deformation resistance(σp) and deformation efficiency (η). The critical strain(εc) for dynamic recrystallization (DRX) which was decided from the inflection point of strain hardening rate(θ) - effective stress (σ) curve was about 0.65 times of peak strain (εp). The relationship among deformation resistance (peak stress, σp), strain rate (ε), and temperature (T) could be expressed by ε=2.9×1013[sinh(0.0256σp]7.3exp (-216,000/RT). The deformation efficiency (η)which was calculated on the basis of the dynamic materials model (DMM) showed high values at the condition of 500∼550℃, 5/sec for 100% strain. The results from three deformation maps were compared with microstructures. The best condition of plastic deformation could be determined as 500℃ and 5/sec.

  • PDF

사면 변형 측정을 위한 3차원 레이저 스캐너의 적용 (Application of 3-D Laser Scanner for the Measurement of Slope Displacement)

  • 오석훈;서백수
    • 한국지구과학회지
    • /
    • 제31권6호
    • /
    • pp.555-562
    • /
    • 2010
  • 응력을 받고 있는 사면의 변형 여부를 분석하기 위해 3차원 레이저 스캐너를 이용하여 일정 기간의 차이를 두고 정밀 측량을 수행하였다. 3차원 레이저 스캐너는 비접촉식으로 레이저 빔의 주행시간을 이용하여 대상점의 3차원 좌표를 결정할 수 있는 장비로써, 사면이나 대형 구조물의 변위를 분석하는데 매우 유용한 장비이다. 스캐닝은 약 7개월의 시간차이를 두고 이루어졌으며, 측정간의 비교를 위해 사면의 외부에 기준점을 유지하여 사용하였다. 변형 여부를 판단하기 위해, 평면각 변화, 곡면도 변화, 격자 틀의 각도 변화, 공통 병합점의 편차 등을 분석하였다. 분석 결과, 사면의 변형이 특히 많이 발생한 지점을 결정할 수 있었고 이를 보수·보강 방안의 마련에 활용할 수 있었다.

반응표면법을 이용한 냉간전조압연공정 설계변수의 영향도 분석 밑 설계최적화 (Analysis and Optimization of Design Parameters in a Cold Cross Rolling Process using a Response Surface Method)

  • 이형욱;이근안;최석우;윤덕재;임성주;이용신
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.550-555
    • /
    • 2006
  • In this study, effects of forming angle and friction coefficient on a initiation of the Mannesmann hole defect were analyzed by using a response surface method. The maximum effective plastic strain at center point of specimen is utilized for the prediction of the starting point of crack occurrence, which is suggested by the comparison of integrals of four different ductile fracture models between the histories of the effective plastic strain at center point. It was revealed that the principal stress at the center is the dominant element to the increase of the effective plastic strain. It was also verified by the simulation results from the comparison of experiment and simulation. It is provided that the forming angle of 25 degrees and the spreading angle of 1 degree can be a proper design condition without an occurrence of internal hole defect and an excessive slip.

강소성 유한요소해석에서 Hourglass Control (Hourglass Control in Rigid-Plastic Finite Element Analysis)

  • 강정진;오수익
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1290-1300
    • /
    • 1996
  • The finite element method, based on rigid-plastic formulation, is widely used to simulate metal forming processes. In order to improve the computational efficiency of the rigid-plastic FEM, one-point integration is used to evaluate the stiffness matrix with four-node rectangular elements and eight-node brick elements. In order to control the hourglass modes, hourglass strain rate components were introduced and included in the effective strain rate definition, Numerical tests have shown that the proposed one-point integration scheme reduces the stiffness matrix evaluation time without deteriorating the convergence behavior of Newton-Raphson method. Simulations of a ring compression, a plane-strain closed-die forging and the three-dimensional spike forging processes were carried out by using the proposed integration method. The simulation results are compared to those obtained by applying the conventional integraiton method in terms of the solution accuracy and computational efficiency.

미소 중력장에 있는 저신장율 화염소화에 미치는 다차원 효과 (Multi-Dimensional Effects on a tow Strain Rate Flame Extinction Under Microgravity Environment)

  • 오창보;김정수;;박정
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.988-996
    • /
    • 2005
  • Flame structure and extinction mechanism of counterflow methane/air non-premixed flame diluted with nitrogen are studied by NASA 2.2 s drop tower experiments and two-dimensional numerical simulations with finite rate chemistry and transport properties. Extinction mechanism at low strain rate is examined through the comparison among results of microgravity experiment, 1D and 2D simulations with a finite burner diameter. A two-dimensional simulation in counterflow flame especially with a finite burner diameter is shown to be very important in explaining the importance of multidimensional effects and lateral heat loss in flame extinction, effects that cannot be understood using a one-dimensional flamelet model. Extinction mechanism at low strain rate is quite different from that at high strain rate. Low strain rate flame is extinguished initially at the outer flame edge, the flame shrinks inward, and finally is extinguished at the center. It is clarified from the overall fractional contribution by each term in energy equation to heat release rate that the contribution of radiation fraction with 1D and 2D simulations does not change so much and the overall fractional contribution is decisively attributed to radial conduction ('lateral heat loss'). The experiments by Maruta et at. can be only completely understood if multi-dimensional heat loss effects are considered. It is, as a result, verified that the turning point, which is caused only by pure radiation heat loss, has to be shifted towards much lower global strain rate in microgravity flame.

다이아프램식 수소압축기에서 다이아프램 변형특성에 관한 실험적 연구 (An Experimental Study on the Diaphragm Deflection Characteristic of a Hydrogen Diaphragm Compressor)

  • 신영일;박현우;이영준;김규보;송주헌;장영준;전충환
    • 한국수소및신에너지학회논문집
    • /
    • 제20권4호
    • /
    • pp.274-282
    • /
    • 2009
  • Diaphragm compressor is widely used for hydrogen compression because it achieves high gas pressure without gas contamination. Diaphragm deflecting in the cavity with high pressure formed by an oil compression is the most important component in the compressor. Therefore, it is necessary to obtain deflection degree of diaphragm to predict the damage point of diaphragm. The objective of this study is to estimate the diaphragm's damage point through diaphragm deflection test by implementing with strain gauges attached on several radial points. Without gas compression, strain sum of each points varied as similarly as the variation of the pressure with respect to time. And while the motor speed was slower than 400rpm, the strain near the rim was larger than that of the center. When motor speed, however, was over 500rpm, strain became similar to that of the center and the rim. With gas compression, it was shown that the variation of the strain sum was delayed against that of the pressure and the strain near the rim was much higher than that of the center.

An Investigation about Dynamic Behavior of Three Point Bending Specimen

  • Cho, Jae-Ung;Han, Moon-Sik
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.149-157
    • /
    • 2000
  • Computer simulations of the mechanical behavior of a three point bend specimen with a quarter notch under impact load are performed. The case with a load application point at the side is considered. An elastic-plastic von Mises material model is chosen. Three phases such as impact bouncing and bending phases are found to be identified during the period from the moment of impact to the estimated time for crack initiation. It is clearly shown that no plastic deformation near the crack tip is appeared at the impact phase. However it is confirmed that the plastic zone near the crack tip emerges in the second phase and the plastic hinge has been formed in the third phase. Gap opening displacement crack tip opening displacement and strain rate are compared with rate dependent material(visco-plastic material). The stability during various dynamic load can be seen by using the simulation of this study.

  • PDF

한계변형률 개념을 활용한 터널안전성 평가 (Tunnel Safety Assessment by using the Concept of the Critical Strain in the Ground)

  • 박시현;박성근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.571-576
    • /
    • 2010
  • In this study, an application method of critical strains concept for tunnels' safety by using the values of measured displacements which are obtained in the field is discussed. The aim is to: (1) study on the engineering meanings of critical strains concept by reviewing the previous researches and application examples with measured displacement values; (2) study on the engineering reasonability of critical strains concept with the view point of a tunnel engineering and a geotechnical engineering; (3) study on the features of ground deformation due to tunneling and reciprocal relation between total displacement and measured displacement; (4) evaluate a tunnel safety by using domestic measurements collected in the field; and (5) re-evaluate the control criteria which were previously used in the field, with the view point of critical strains concept. Consequently, it was confirmed that critical strains in the ground has a reasonability and a possibility of unified or common concept with the view point of a tunnel engineering.

  • PDF