• Title/Summary/Keyword: Strain gage sensor

Search Result 85, Processing Time 0.024 seconds

Fabrication of a Temperature-Compensating FBB Sensor for Measurement of Mechanical Strain (온도 보상형 Double FBG센서의 제작과 기계적 변형률 측정시험)

  • Jung, Dal-Woo;Kwon, Il-Bum;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.356-361
    • /
    • 2005
  • A temperature-compensating double fiber Bragg grating(FBG) sensor having two different FBGs in one fiber line was proposed for real time measurement of mechanical normal strain in structures. Measurement of mechanical strains of the aluminum beam surface by the double FBG sensor was performed under various thermal conditions, and the results were compared with those of electrical resistance strain gage. The FBG sensor fabricated in this study was able to measure accurately the mechanical strains without containing any thermal strain component.

Construction of The Mac Wave Detection System using Strain Gage (스트레인 게이지를 이용한 맥파 검출 시스템의 구성)

  • Yi, Chong-Ho
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.4
    • /
    • pp.88-93
    • /
    • 1999
  • In this paper, a new Mac-wave detection system by strain gage is constructed for study on a Mac-wave which is major factor of diagnosis in oriental medicine. Inherent resistance of a strain gage is linearly changed with strain of the sensor, thus the Mac-wave of wrist can be detected by using of the strain gage. A precision bridge circuit and high sensitive amplifier is designed for detecting the change of resistance of the strain gage in this experiments. A very small change of Mac-wave is acquired in the circuit. And the digital signal of the detected Mac-wave are acquired on a PC by multichannel A/D converter and displayed graphically by programming. The characteristics of the Mac-wave of sampled 6 persons in the time and the frequency domain are analysed, therefore the usefulness of the system constructed in this experiments are proved.

  • PDF

Fabrication and Characteristics of 30 MN Strain Gage Type Force Sensor (30 MN 스트레인 게이지 방식 힘 센서의 제작 및 특성)

  • Kang, D.I.;Song, H.K.;Lee, J.T.
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.24-32
    • /
    • 1994
  • A force sensor of 30 MN capacity using build-up technique in which three load cells of 10 MN capacity are arranged in parallel was fabricated. A column spring element was adopted as a shape of a strain gage type load cell. Temperature compensation circuits were used to reduce the error of a load cell. It was estimated that the total error of the fabricated force sensor is less than 0.1 %. The force sensor may be used to calibrate or test material testing machines above 4.5 MN capacity in industries.

  • PDF

Development of Optical Frequency Modulated Fiber Optic Interferometric Sensor (광주파수 변조 광섬유 간섭형 센서의 개발)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Kim, Min-Soo;Lee, Wang-Joo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.163-170
    • /
    • 2000
  • Optical frequency modulated fiber optic interferometric sensor was developed to sense the mechanical quantities, such as displacement, strain, force etc. It has been difficult to distinguish whether the increase of the mechanical quantities or the decrease of the quantities measured by the conventional fiber optic interferometric sensors because their signals only have a sinusoidal wave pattern related to the change of mechanical quantities. In this study, in order to measure the mechanical quantifies with the distinction of the changing direction of the quantities, the fiber of optic Michelson interferometric sensor was simply constructed by the laser light modulated with saw tooth wave pattern. The output signal of the sensor was controlled as the sinusoidal wave. The signal processing was based on the counting of the wave number of the output signal during constant time duration. The strain was determined by the cumulative value of the wave number producted by the gage factor. In order to verify the strain measurement capability of this sensor, the strain increase-decrease test was performed by universal testing machine installed with the aluminum specimen bonded with the fiber optic sensor and electrical strain gage. In the result of the test, the strain from the fiber optic sensor had a good agreement with the values from the electrical strain gage.

  • PDF

Measurement of Material Deformation Using Laser Speckle (레이저 스페클을 이용한 재료 변형 측정)

  • 전문창;강기주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.688-694
    • /
    • 2002
  • As a tool for strain measurement to work with screw driven or hydraulic material test systems, in which mechanical vibration is inherent, SSDG(Speckle Strain/Displacement Gage), ESP(Electronic Speckle Photography) and its 3-dimension version SDSP are investigated for the theory and practical appliance. Through tension test of steel strips, their validity and shortcomings are examined. As the results, it has been shown that, although SSDG and ESP provide direct measurement of in-plane strain in one direction, they are so sensitive to the out-plane displacement. On the other hand, SDSP which is aided with DIC (Digital Image Correlation) technique to trace the movement of the speckles provides not only in-plane 2-dimensional displacement field, but also out-of-plane displacement simultaneously. However, because the DIC is time-consuming, not automated yet and it needs post-processing to evaluate strain from the displacement field, SDSP appears to be not adequate as a real time sensor.

  • PDF

An Ideal strain gage placement plan for structural health monitoring under seismic loadings

  • Vafaei, Mohammadreza;Alih, Sophia C.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.541-553
    • /
    • 2015
  • Structural Health Monitoring (SHM) systems can provide valuable information regarding the safety of structures during and after ground motions which can be used by authorities to reduce post-earthquake hazards. Strain gages as a key element play an important role in the success of SHM systems. Reducing the number of required strain gages while keeping the efficiency of SHM system not only can reduce the cost of structural health monitoring but also avoids storage and process of uninformative data. In this study, a method based on performance based seismic design of structures is proposed for ideal placement of stain gages in structures. The robustness and efficiency of the proposed method is demonstrated through installation of strain gages on an Airport Traffic Control (ATC) Tower. The obtained results show that the number of required strain gages decrease significantly.

Measurement of Pile Load Transfer Using Fiber Bragg Grating Sensor (광섬유 격자소자에 의한 말뚝의 하중전이 측정)

  • 오정호;이원제;이상배;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.201-208
    • /
    • 2000
  • Axial load distribution in model piles was measured by fiber Bragg Grating(FBG) sensor to investigate a possibility of analyzing the load transfer mechanism by Fiber Optic sensor system. Since FBGs of different wave lengths can be multiplexed in an optical fiber, the installation of sensor system and the measurement of strains are relatively simple, compared with consisting strain gages. In this study, FBG sensors and electric strain gages were embedded in the same piles and the distributions of load transfer by two sensor systems were measured. It was observed from the test results that the variations of axial load by both systems showed insignificant difference and that the measurements by FBG were smoother than those by strain gage. Under the environments of laboratory testing, survival rate of embedded FBG system was higher than that of strain gage. Therefore, it was concluded that the use of FBG sensor has a great potential for the measurement of load transfer for pile foundation.

  • PDF

Strain Analysis of a Six Axis Force-Torque Sensor Using Cross-Shaped Elastic Structure with Circular Holes (원구멍이 있는 십자형 탄성체를 가진 6축 힘, 토크 센서의 변형률 해석)

  • Kim, Joo-Yong;Kang, Chul-Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.5-14
    • /
    • 1999
  • The necessity of six axis force-torque sensors is well recognized in the fields of automatic fine assembly, deburring polishing, and automatic fish processing using robotic manipulators. The paper proposes a simple and compact elastic structure of the force-torque sensor which senses externally applied three force and three torque components. Rough surface strain distribution of the elastic structure is examined analytically, and then more accurate surface strain are obtained from finite element analysis. The compliance matrix which is a linear relationship between force components and strain measurements is obtained for the proposed sensor. Some basic principles of measuring 3 force and torque components are also presented.

  • PDF

Evaluation of Displacement Measurement Technique Using Laser Speckle and Digital Image Correlation Method (레이저 스페클과 디지털 화상관련법을 이용한 변위 측정방법의 평가)

  • 강기주;이정현;전문창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.47-54
    • /
    • 2003
  • As a tool for strain measurement to work with screw driven or hydraulic material test systems, in which mechanical vibration is inherent, SSDG (Speckle Strain/Displacement Gage), ESP (Electronic Speckle Photography) and its 3-dimension version SDSP are evaluated for the theory and practical appliance. Through tension test of steel strips, their validity and shortcomings are examined. As the results, it has been shown that, although SSDG and ESP provide direct measurement of in-plane strain in one direction, they are so sensitive to the out-plane displacement. On the other hand, SDSP which is aided with DIC (Digital Image Correlation) technique to trace the movement of the speckles provides not only in-plane 2-dimensional displacement field, but also out-of-plane displacement simultaneously. However, because the DIC is time-consuming, not automated yet and it needs post-processing to evaluate strain from the displacement field, SDSP appears to be not adequate as a real time sensor.