• 제목/요약/키워드: Strain for Maximum Softening Rate

검색결과 13건 처리시간 0.017초

마그네슘 합금 판재의 평면 DIC 측정을 위한 지그 개발과 이를 활용한 단축 변형 특성 분석 (Development of jigs for planar measurement with DIC and determination of magnesium material properties using jigs)

  • 강정은;유지윤;최인규;유제형;이창환
    • Design & Manufacturing
    • /
    • 제15권2호
    • /
    • pp.23-29
    • /
    • 2021
  • The specific strength of magnesium alloy is four times that of iron and 1.5 times that of aluminum. For this reason, its use is increasing in the transportation industry which is promoting weight reduction. At room temperature, magnesium alloy has low formability due to Hexagonal closed packed (HCP) structure with relatively little slip plane. However, as the molding temperature increases, the formability of the magnesium alloy is greatly improved due to the activation of other additional slip systems, and the flow stress and elongation vary greatly depending on the temperature. In addition, magnesium alloys exhibit asymmetrical behavior, which is different from tensile and compression behavior. In this study, a jig was developed that can measure the plane deformation behavior on the surface of a material in tensile and compression tests of magnesium alloys in warm temperature. A jig was designed to prevent buckling occurring in the compression test by applying a certain pressure to apply it to the tensile and compression tests. And the tensile and compressive behavior of magnesium at each temperature was investigated with the developed jig and DIC equipment. In each experiment, the strain rate condition was set to a quasi-static strain rate of 0.01/s. The transformation temperature is room temperature, 100℃. 150℃, 200℃, 250℃. As a result of the experiment, the flow stress tended to decrease as the temperature increased. The maximum stress decreased by 60% at 250 degrees compared to room temperature. Particularly, work softening occurred above 150 degrees, which is the recrystallization temperature of the magnesium alloy. The elongation also tended to increase as the deformation temperature increased and increased by 60% at 250 degrees compared to room temperature. In the compression experiment, it was confirmed that the maximum stress decreased as the temperature increased.

HT-60강 용접부의 SCC및 AE신호특성에 관한 연구 (Study on Characteristics of SCC and AE Signals for Weld HAZ of HT-60 Steel)

  • 나의균;유효선;김훈
    • 비파괴검사학회지
    • /
    • 제21권1호
    • /
    • pp.62-68
    • /
    • 2001
  • 인공해수에서 HT-60강 용접부의 응력부식균열(SCC)과 음향방출(AE)신호특성을 알아보기 위하여 SCC외 AE실험을 동시에 실시하였으며, 양 실험결과를 상호 비교 분석하였다. 모재의 경우, -0.8V에서 보다 긴 파단수명을 보였고, 용해기구 등으로 인하여 -0.8V에 비해 -0.5V에서 AE가 많이 발생하였다. 그러나 시험편에 가해진 전위 값에 관계없이 최대하중 이후의 영역에서 AE 발생 수는 감소하였다. 용접재의 경우, 모재 및 후열처리재와는 달리 용접부의 특이성 때문에 많은 AE 발생과 큰 진폭의 범위$(40{\sim}100dB)$를 나타내었으며 최대하중 이후에도 AE 발생이 활발하였다. 또한, 보다 크고 많은 균열이 파단면에 형성되었음을 SEM관찰을 통하여 관찰할 수 있었으며, 이들 결과로부터 용접부는 인공해수에서 SCC현상이 가장 심하게 일어나고 있음을 확인할 수 있었다. 후열처리는 용접부의 연화를 초래하였고, 용접재에 비해 부식환경에 대한 민감도를 떨어뜨리는 효과를 가져왔다.

  • PDF

Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body

  • Huang, Ming;Xu, Chao-Shui;Zhan, Jin-Wu;Wang, Jun-Bao
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.333-352
    • /
    • 2017
  • A comparison study is made between the dynamic properties of an argillaceous siltstone and its grouting-reinforced body. The purpose is to investigate how grout injection can help repair broken soft rocks. A slightly weathered argillaceous siltstone is selected, and part of the siltstone is mechanically crushed and cemented with Portland cement to simulate the grouting-reinforced body. Core specimens with the size of $50mm{\times}38mm$ are prepared from the original rock and the grouting-reinforced body. Impact tests on these samples are then carried out using a Split Hopkinson Pressure Bar (SHPB) apparatus. Failure patterns are analyzed and geotechnical parameters of the specimens are estimated. Based on the experimental results, for the grouting-reinforced body, its shock resistance is poorer than that of the original rock, and most cracks happen in the cementation boundaries between the cement mortar and the original rock particles. It was observed that the grouting-reinforced body ends up with more fragmented residues, most of them have larger fractal dimensions, and its dynamic strength is generally lower. The mass ratio of broken rocks to cement has a significant effect on its dynamic properties and there is an optimal ratio that the maximum dynamic peak strength can be achieved. The dynamic strain-softening behavior of the grouting-reinforced body is more significant compared with that of the original rock. Both the time dependent damage model and the modified overstress damage model are equally applicable to the original rock, but the former performs much better compared with the latter for the grouting-reinforced body. In addition, it was also shown that water content and impact velocity both have significant effect on dynamic properties of the original rock and its grouting-reinforced body. Higher water content leads to more small broken rock pieces, larger fractal dimensions, lower dynamic peak strength and smaller elastic modulus. However, the water content plays a minor role in fractal dimensions when the impact velocity is beyond a certain value. Higher impact loading rate leads to higher degree of fragmentation and larger fractal dimensions both in argillaceous siltstone and its grouting-reinforced body. These results provide a sound basis for the quantitative evaluation on how cement grouting can contribute to the repair of broken soft rocks.