• Title/Summary/Keyword: Strain difference function

Search Result 73, Processing Time 0.021 seconds

A Strain based Load Identification for the Safety Monitoring of the Steel Structure (철골 구조물의 안전성 모니터링을 위한 변형률 기반 하중 식별)

  • Oh, Byung-Kwan;Lee, Ji-Hoon;Choi, Se-Woon;Kim, You-Sok;Park, Hyo-Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2014
  • This study proposes a load identification for the safety monitoring of the steel structure based on measured strain data. Instead of parameterizing the stiffness of structure in the existing system identification researches, the loads on a structure and a matrix (the unit strain matrix) defined by the relationship between strain and load on structure are parameterized in this study. The error function is defined by the difference between measured strain and strain estimated by parameters. In order to minimize this error function, the genetic algorithm which is one of the optimization algorithm is applied and the parameters are found. The loads on the structure can be identified through the founded parameters and measured strain data. When the loads are changed, the unmeasured strains are estimated based on founded parameters and measured strains on changed state of structure. To verify the load identification algorithm in this paper, the static experimental test for 3 dimensional steel frame structure was implemented and the loads were exactly identified through the measured strain data. In case of loading changes, the unmeasured strains which are monitoring targets on the structure were estimated in acceptable error range (0.17~3.13%). It is expected that the identification method in this study is applied to the safety monitoring of steel structures more practically.

Effects of thickness variations on the thermal elastoplastic behavior of annular discs

  • Wang, Yun-Che;Alexandrov, Sergei;Jeng, Yeau-Ren
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.839-856
    • /
    • 2013
  • Metallic annular discs with their outer boundary fully constrained are studied with newly derived semi-analytical solutions for the effects of thickness variations under thermal loading and unloading. The plane stress and axisymmetric assumptions were adopted, and the thickness of the disk depends on the radius hyperbolically with an exponent n. Furthermore, it is assumed that the stress state is two dimensional and temperature is uniform in the domain. The solutions include the elastic, elastic-plastic and plastic-collapse behavior, depending on the values of temperature. The von Mises type yield criterion is adopted in this work. The material properties, Young's modulus, yield stress and thermal expansion coefficient, are assumed temperature dependent, while the Poisson's ratio is assumed to be temperature independent. It is found that for any n values, if the normalized hole radius a greater than 0.6, the normalized temperature difference between the elastically reversible temperature and plastic collapse temperature is a monotonically decreasing function of inner radius. For small holes, the n values have strong effects on the normalized temperature difference. Furthermore, it is shown that thickness variations may have stronger effects on the strain distributions when temperature-dependent material properties are considered.

Damage Detection in Beam Structures using Harmony Search Method and Frequency Response (보 구조물의 주파수응답을 이용한 화음탐색법 기반 손상검색)

  • Lee, So-Young;Park, Jae-Hyung;Yi, Jin-Hak;Ryu, Yeon-Sun;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.139-144
    • /
    • 2008
  • In this study, damage detection method using harmony search method and frequency response is proposed. In order to verify this method, the following approaches are implemented. Firstly, damage detection method using harmony search is developed. To detect damage, objective function that minimize difference with natural frequency and modal strain energy from undamaged and damaged model is used. Secondly, finite element model for beam structure is created. And damage scenario is determined. Lastly, damage detection is performed by proposed method and utility of proposed method is verified.

  • PDF

Stiffness Modulus Comparison in Trackbed Foundation Soil

  • Kim, Daesung;Cho, Hojin;Park, Jaebeom;Lim, Yujin
    • International Journal of Railway
    • /
    • v.8 no.2
    • /
    • pp.50-54
    • /
    • 2015
  • The primary function of the trackbed in a conventional railway track system is to decrease the stresses in the subgrade to be in an acceptable level. A properly designed trackbed layer performs this task adequately. Many design procedures have used assumed and/or are based on critical stiffness values of the layers obtained mostly in the field to calculate an appropriate thickness of the sublayers of the trackbed foundation. However, those stiffness values do not consider strain levels clearly and precisely in the layers. This study proposes a method of computation of stiffness that can handle with strain level in the layers of the trackbed foundation in order to provide properly selected design values of the stiffness of the layers. The shear modulus values are dependent on shear strain level so that the strain levels generated in the subgrade in the trackbed under wheel loading and below plate of Repeated Plate Bearing Test (RPBT) are investigated by finite element analysis program ABAQUS and PLAXIS programs. The strain levels generated in the subgrade from RPBT are compared to those values from RC (Resonant Column) test after some consideration of strain levels and stress consideration. For comparison of shear modulus G obtained from RC test and stiffness moduli $E_{v2}$ obtained from RPBT in the field, many numbers of mid-size RC tests in laboratory and RPBT in field were performed extensively. It was found in this study that there is a big difference in stiffness modulus when the converted $E_{v2}$ values were compared to those values of RC test. It is verified in this study that it is necessary to use precise and increased loading steps to construct nonlinear curves from RPBT in order to get correct $E_{v2}$ values in proper strain levels.

Test Equipment and Test Portfolio for Education of Strain and Vibration Measurements (변형률 및 진동 측정 교육을 위한 실험 장치와 실험 포트폴리오)

  • Yang, Jimin;Lee, Dooyoul
    • Journal of Practical Engineering Education
    • /
    • v.13 no.3
    • /
    • pp.497-505
    • /
    • 2021
  • Test equipment for strain and vibration measurement was designed for educational purposes. Widely available and affordable materials were put into making this device. Three strain gauges placed on an iron ruler made cantilevered beam were used to measure values according to external load. An electromagnet triggered excitation and a function generator created vibration of the beam. We present three different tests conducted with this equipment regarding production of scales, measurement of resonant frequency, and calculation of the difference between excitation frequency and measured frequency. Overall, this paper presents a piece of simple yet inexpensive test equipment and its corresponding portfolio with expectations of being applied to the educational field for efficient measurement of load and vibration.

Effects of Shot Peening on Crack Growth Resistance in Carburized Gears (침탄치차의 쇼트피닝처리가 크랙진전억제에 미치는 영향)

  • 류성기;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3227-3235
    • /
    • 1994
  • This paper deals with an evaluation of the residual stress due to shot peening induced in a carburized gear tooth and its application to the fatigue crack propagation problem. A practical method is proposed on the basis of the assumption that the residual stress is caused by the difference of volume expansion in the case and the core, and the influence of both the reduction of retained austenite and the strain due to shot peening are considered. The evaluated residual stress is close to the measured stress, though the surface stress is rather overestimated. The stress intensity factor is computed by the influence function method, and it is shown that the factor is decreased by the residual stress in shot peened gear tooth. The shot peening is fairly effective to the reduction of fatigue crack growth rate. The crack propagation is simulated and the resistance due to shot peening is quantitatively demonstrated and discussed.

A practical power law creep modeling of alloy 690 SG tube materials

  • Lee, Bong-Sang;Kim, Jong-Min;Kwon, June-Yeop;Choi, Kwon-Jae;Kim, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2953-2959
    • /
    • 2021
  • A new practical modeling of the Norton's power law creep is proposed and implemented to analyze the high temperature behaviors of Alloy 690 SG tube material. In the model, both the stress exponent n and the rate constant B are simply treated as the temperature dependent parameters. Based on the two-step optimization procedure, the temperature function of the rate constant B(T) was determined for the data set of each B value after fixing the stress exponent n value by using the prior optimized function at each temperature. This procedure could significantly reduce the numerical errors when using the power law creep equations. Based on the better description of the steady-state creep rates, the experimental rupture times could also be well predicted by using the Monkman-Grant relationship. Furthermore, the difference in tensile strengths at high temperatures could be very well estimated by assuming the imaginary creep stress related to the given strain rate after correcting the temperature effects on the elastic modulus.

Bearing capacity of foundation on rock mass depending on footing shape and interface roughness

  • Alencar, Ana S.;Galindo, Ruben A.;Melentijevic, Svetlana
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.391-406
    • /
    • 2019
  • The aim of this paper was to study the influence of the footing shape and the effect of the roughness of the foundation base on the bearing capacity of shallow foundations on rock masses. For this purpose the finite difference method was used to analyze the bearing capacity of various types and states of rock masses under the assumption of Hoek-Brown failure criterion, for both plane strain and axisymmetric model, and considering smooth and rough interface. The results were analyzed based on a sensitivity study of four varying parameters: foundation width, rock material constant (mo), uniaxial compressive strength and geological strength index. Knowing how each parameter influences the bearing capacity depending on the footing shape (circular vs strip footing) and the footing base interface roughness (smooth vs rough), two correlation factors were developed to estimate the percentage increase of the ultimate bearing capacity as a function of the footing shape and the roughness of the footing base interface.

The Effects of Temperature and Strain Rate on Flow Stress and Strain of AA5083 Alloy during High Temperature Deformation (AA5083 합금의 고온 변형시 유동응력 및 연신율에 미치는 온도와 변형 속도의 영향)

  • Ko, Byung-Chul;Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.168-176
    • /
    • 1998
  • Hot workability of the AA5083 alloy ws investigated by torsion test at temperature ranges of $350{\sim}520^{\circ}C$ and strain rates of 0.5, 1.0, and 3.0/sec. The flow stress and hot ductility of the AA5083 alloy as a function of deformation variables such as temperature and train rate were studied. The microstructural evolution of the AA5083 alloy was studied in relation to Zener-Hollomon parameter (Z=exp( /RT) Also the hot restoration mechanism of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ In addition the difference microstructures during hot deformation. It was found that the increase of flow curves and deformed microstructures during hot deformation. It was found that the increase of flow stress of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C.\;0.5/sec)$. However under the low Z values less than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ the flow stress increase with increasing the Z values. The large dispersoid particles in the matrix grain decreased the flow strain of the AA5083 alloy because it caused the stress concentration during hot deformation.

  • PDF

Effect of Rhus chinensis Gall Extract on Liver Function, Plasma Lipid Composition and Antioxidant System in Rats with High Fat Diet (오배자 추출물이 고지방식이를 급여한 흰쥐의 간기능, 혈청지질구성 및 항산화계에 미치는 영향)

  • Choi, Moo-Young;Choi, Eun-Jung;Lee, Eun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.632-637
    • /
    • 1999
  • The purposes of this study is to investigate the effect of Rhus chinensis gall extract on liver function, plasma lipid composition and antioxidant system in the obese rats with high fat diet for seven weeks. Thirty two male rats of Sprague Dawely strain were divided into four groups. they are normal group (basal diet), control group(high fat diet), III group(high fat diet with Rhus chinensis gall extract 25mg/kg body weight per day) and IV group(high fat diet with Rhus chinensis gall extract 250mg/kg body weight per day). Rats in III group and IV group were administered with Rhus chinensis gall extract accordingly. Weight gains showed a tendency to decrease in rat with Rhus chinensis gall extract group but showed no differences among treatment groups. Food intake and Food efficiency ratio were not significantly different among treatment groups. Plasma total cholesterol showed a tendency to decrease in Rhus chinensis gall extract group. HDL cholesterol showed a tendency to decrease in 25mg/kg of Rhus chinensis gall extract group. However, in the 250mg/kg of Rhus chinensis gall extract group, these values showed no significant difference compared to the control group (p<0.05). GPT activities showed no significant difference among treatment groups. GOT activities showed a tendency to decrease in the groups of Rhus chinensis gall extract groups. Lipid peroxide level was significantly higher in control group than those of normal group. In Rhus chinensis gall extract groups, lipid peroxide level showed a tendency to decrease, but glutathione peroxidase activity was progressively increased. Results of our research in this paper show that Rhus chinensis gall extract might improve liver function, antioxidant system and plasma lipid composition in rats with high fat diet.

  • PDF