• Title/Summary/Keyword: Strain condition

Search Result 1,913, Processing Time 0.03 seconds

Strain-based structural condition assessment of an instrumented arch bridge using FBG monitoring data

  • Ye, X.W.;Yi, Ting-Hua;Su, Y.H.;Liu, T.;Chen, B.
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.139-150
    • /
    • 2017
  • The structural strain plays a significant role in structural condition assessment of in-service bridges in terms of structural bearing capacity, structural reliability level and entire safety redundancy. Therefore, it has been one of the most important parameters concerned by researchers and engineers engaged in structural health monitoring (SHM) practices. In this paper, an SHM system instrumented on the Jiubao Bridge located in Hangzhou, China is firstly introduced. This system involves nine subsystems and has been continuously operated for five years since 2012. As part of the SHM system, a total of 166 fiber Bragg grating (FBG) strain sensors are installed on the bridge to measure the dynamic strain responses of key structural components. Based on the strain monitoring data acquired in recent two years, the strain-based structural condition assessment of the Jiubao Bridge is carried out. The wavelet multi-resolution algorithm is applied to separate the temperature effect from the raw strain data. The obtained strain data under the normal traffic and wind condition and under the typhoon condition are examined for structural safety evaluation. The structural condition rating of the bridge in accordance with the AASHTO specification for condition evaluation and load and resistance factor rating of highway bridges is performed by use of the processed strain data in combination with finite element analysis. The analysis framework presented in this study can be used as a reference for facilitating the assessment, inspection and maintenance activities of in-service bridges instrumented with long-term SHM system.

Analytical Study on Characteristics of von Mises Yield Criterion under Plane Strain Condition (평면변형률상태에서의 von Mises 항복기준의 특성에 관한 이론적 연구)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6391-6396
    • /
    • 2015
  • In order to investigate characteristics of the von Mises yield criterion under 2 dimensional stress condition, two cases of plane strain were studied. One of which was for zero elastic strain and the other was for zero plastic strain increment. Yield functions for the plane strain condition for zero elastic strain and for the plane stress condition were represented as ellipse and the two yield functions were compared by ratios of major axis, minor axis and eccentricity and it was seen that the ratio of minor axis was the same between the two cases and the ratios of major axis and eccentricity were functions of Poisson's ratio. Region of elastic behavior obtained from considering plane strain condition of zero elastic strain increases as the Poisson's ratio increases. Yield function for plane strain obtained from considering zero plastic increment and associate flow rule was displayed as straight line and the region of elastic behavior was greater than that for the case of plane stress.

Effect of Strain Rate and Pre-strain on Tensile Properties of Heat-treated A5082 and A6060 Aluminium Wrought Alloys (열처리한 A5082와 A6060합금의 인장특성에 미치는 변형율속도 및 예비변형율의 영향)

  • Lee, Choongdo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.4
    • /
    • pp.161-172
    • /
    • 2020
  • The tensile property of A5082 and A6060 aluminium wrought alloys was investigated, in terms of the strain rate sensitivity on alloy conditions by heat treatment and bake hardenability on pre-strain prior to strain ageing. The tensile test was carried out in a range of strain rate of 4.17 × 10-5 s-1 ~ 4.17 × 10-5 s-1 in room temperature and the nominal range of pre-strain was 3.0 ~ 10.5%. The tensile deformation of A5082 alloys is characterized as typical case of dynamic strain ageing with negative strain rate sensitivity for all conditions, and the tensile strength indicates a similar level regardless of alloy conditions, except only in full annealed condition. The stress-relief annealing on A6060 alloys can induce practical decrease in strength level of over approximately 100 MPa without any ductility loss, compared to as-rolled condition, while a full annealed and aged condition leads remarkable strengthening effect with the decrease of tensile elongation. Additionally, the bake hardenability of A5082 alloy by strain ageing indicates a negative dependence upon the increase of pre-strain, while A6060 alloy exhibits a positive sign even in low level relatively compared with conventional SPCC.

An investigation of the strain rate effect on the delamination toughness of fiber-reinforced composites in the hydrostatic pressure condition (정수압 조건에서 변형률 변화가 섬유강화 복합재의 층간분리인성에 미치는 영향에 대한 연구)

  • Ha Sung Rok;Rhee Kyong Yop;Kim Hyeon Ju;Jung Dong Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.99-103
    • /
    • 2005
  • It is generally accepted that fracture toughness of fiber-reinforced polymer composites is affected by strain rate in an atmospheric pressure condition. For a present study, the strain rate effect on the fracture toughness of fiber-reinforced laminated composites in the hydrostatic pressure condition was investigated. For this purpose, fracture tests have been conducted using graphite/epoxy laminated composites applying three steps of the strain rate at 270 MPa hydrostatic pressure condition. The strain rates applied were $0.05\%/sec,\;0.25\%/sec$, and $0.55\%/sec$. Fracture toughness was determined from the work factor approach as a function of applied strain rate. The result showed that fracture toughness decreased as the strain rate increased. Specifically, the fracture toughness decreased $12\%$ as the strain rate increased from $0.05\%/sec$ to $0.55\%/sec$.

Prediction of High Temperature Plastic Deformation Variables on Al 6061 Alloy (Al 6061 합금의 고온 소성변형 조건의 예측)

  • 김성일;정태성;유연철;오수익
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.576-582
    • /
    • 1999
  • The high temperature behavior of Al 6061 alloy was characterized by the hot torsion test in the temperature ranges of 400∼550℃ and the strain rate ranges of 0.05∼5/sec. To decide optimum deformation condition, three types of deformation maps were individually made from the critical strain (εc). deformation resistance(σp) and deformation efficiency (η). The critical strain(εc) for dynamic recrystallization (DRX) which was decided from the inflection point of strain hardening rate(θ) - effective stress (σ) curve was about 0.65 times of peak strain (εp). The relationship among deformation resistance (peak stress, σp), strain rate (ε), and temperature (T) could be expressed by ε=2.9×1013[sinh(0.0256σp]7.3exp (-216,000/RT). The deformation efficiency (η)which was calculated on the basis of the dynamic materials model (DMM) showed high values at the condition of 500∼550℃, 5/sec for 100% strain. The results from three deformation maps were compared with microstructures. The best condition of plastic deformation could be determined as 500℃ and 5/sec.

  • PDF

Condition assessment for high-speed railway bridges based on train-induced strain response

  • Li, Zhonglong;Li, Shunlong;Lv, Jia;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.199-219
    • /
    • 2015
  • This paper presents the non-destructive evaluation of a high-speed railway bridge using train-induced strain responses. Based on the train-track-bridge interaction analysis, the strain responses of a high-speed railway bridge under moving trains with different operation status could be calculated. The train induced strain responses could be divided into two parts: the force vibration stage and the free vibration stage. The strain-displacement relationship is analysed and used for deriving critical displacements from theoretical stain measurements at a forced vibration stage. The derived displacements would be suitable for the condition assessment of the bridge through design specifications defined indexes and would show certain limits to the practical application. Thus, the damage identification of high-speed railways, such as the stiffness degradation location, needs to be done by comparing the measured strain response under moving trains in different states because the vehicle types of high-speed railway are relatively clear and definite. The monitored strain responses at the free vibration stage, after trains pass through the bridge, would be used for identifying the strain modes. The relationship between and the degradation degree and the strain mode shapes shows certain rules for the widely used simply supported beam bridges. The numerical simulation proves simple and effective for the proposed method to locate and quantify the stiffness degradation.

A Study of the Influence of Strain Gauge Location and Contact Conditions by Loading Platens on the Mechanical Behavior of Rock Specimens (암석공시체의 역학적 거동 해석에 미치는 변형율게이지 위치 및 단면구속 영향에 대한 연구)

  • 정교철
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.215-224
    • /
    • 1998
  • In this study, total strain was measured by LVDTs and local strains on the surface of specimens were measured by strain gauges. And axi-symmetrically elastoplastic FEM analyses was carried out for cylindrical specimens. Considering the influence of the restraint induced by the loading platen, in the case of H/D=1, the strain distribution on the side of a specimen is obviously affected by the condition of platen contact. Furthermore, it is clear that the larger H/D ratio becomes, the smaller the influence to the strain distribution is. For the smooth contact condition, the strain on the side is not influenced by the stiffness of the specimen, the shape and the scale effect, the strain distribution coincides with the nominal total strain. Whereas, in the case of rough contact condition, the strain distribution is remarkably affected. It is made clear that strain responses of hard rock specimens may more sensitive than these of soft rock specimens as a results of interaction between loading platens and specimen and the uniaxial strength of specimens may strongly depends on this interaction and stress-strain relation is affected by the contact condition.

  • PDF

Developement of Hyperbolic Model Considering Strain Dependency (변형률 의존성을 고려한 쌍곡선 모델의 개발)

  • Lee, Yong-An;Kim, You-Seong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.644-655
    • /
    • 2008
  • Conventional hyperbolic model does not satisfactorily predict the overall stress-strain behaviors of various geomaterials. Tatsuoka and Shibuya(1992) suggest the generalized hyperbolic equation(GHE) considering strain dependency and calculated performance is in good agreement with precise triaxial compression test results of stress-strain relations over wide range of strains before peak stress condition in some cases, but GHE model also does not satisfactorily predict stress-strain relations as strain goes on state of peak stress in most cases. For improve a weak point of the GHE, in this study, modified form of generalized hyperbolic equation (MGHE model) is proposed which can predict highly nonlinear stress-strain behavior for various geomaterials from small strain to peak stress condition.

  • PDF

Finite Element Analyses of Cylinder Problems Using Pseudo-General Plane Strain Elements(Planar Constraint) (유사 평면변형률 유한요소를 사용한 실린더 문제의 해석)

  • KWON YOUNG-DOO;KWON HYUN-WOOK;SHIN SANG-MOK;LEE CHAN-BOK
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.66-75
    • /
    • 2003
  • Long cylinder, subjected to internal pressure, is important in the analysis and design of nuclear fuel rod structures. In many cases, long cylinder problems have been considered as a plane strain condition. However, strictly speaking, long cylinder problems are not plane strain problems, but rather a general plane strain (GPS) condition, which is a combination of a plane strain state and a uniform strain state. The magnitude of the uniform axial strain is required, in order to make the summation of the axial force zero. Although there has been the GPS element, this paper proposes a general technique to solve long cylinder problems, using several pseudo-general plane strain (PGPS) elements. The conventional GPS elements and PGPS elements employed are as follows: axisymmetric GPS element (GA3), axisymmetric PGPS element (PGA8/6), 2-D GPS element (GIO), 3-D PGPS element (PG20/16), and reduced PGPS elements (RPGA6, RPG20/16). In particular, PGPS elements (PGA8/6, PG20/16) can be applied in periodic structure problems. These finite elements are tested, using several kinds of examples, thereby confirming the validity of the proposed finite element models.

Pore Water Pressure Behavior due to Undrained Creep of Saturated Clay (포화점성토의 비배수 CREEP 성질에 의한 공극수압의 거동)

  • 강우묵;조성섭;지인택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.38-50
    • /
    • 1988
  • carried out to present a rheology model which is able to treat time-dependent properties of clay. The results were summarized as follow ; 1. The slope (a(e1)) of deviator stress in strain rate test was independent on axial strain, and pore water pressure was decreased with increment of strain rate. 2. The pore water pressure in a stress relaxation condition was not changed when the strain rate before stress relaxation was 0.05%/min., but it was increased with increment of time when the strain rate before stress relaxation was 0.2%/min 3. The greater the stress condition (q/qmax) and the strain rate before creep test became, the greater the increment rate of axial strain in creep test became. 4. SEKIGUCHI's constitutive equation was slightly overpredicted while empirical equation proposed in the study was well coincided with measured values. 5. The constitutive equation induced by a strain function could be dealed with a behavior of the pore water pressure increased with increment of elapsed time after primary consolidation.

  • PDF