• 제목/요약/키워드: Strain States

검색결과 230건 처리시간 0.028초

샌드위치 판재의 성형성을 고려한 차체 부품의 개발 (Development of Automotive Structural Part Considering the Formability of Sandwich Panel)

  • 최원호;최보성;이덕영;황우석
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.33-38
    • /
    • 2012
  • Sandwich composite panel with high strength steel face can reduce the weight of the automotive structural parts. Unlike the parts in aerospace application, the automotive parts are made by the forming process for mass production. The CAE simulation can predict the failures caused by forces and deformation during the forming process. Since the material properties are very important factor for the simulation, we performed the tensile test to get the material properties. The inspections by the optical microscope at each strain level show the states of the polymer resin. The material properties measured by the tensile tests are used for the input data of simulation. The simulation predicts the forming process of the bumper back beam very exactly compared with the try out results.

횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(I) (Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(I))

  • 강지웅;김상태;권오헌
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.25-30
    • /
    • 2004
  • Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interface was treated as thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

Comparison of monotonic and cyclic pushover analyses for the near-collapse point on a mid-rise reinforced concrete framed building

  • GUNES, Necmettin
    • Earthquakes and Structures
    • /
    • 제19권3호
    • /
    • pp.189-196
    • /
    • 2020
  • The near-collapse performance limit is defined as the deformation at the 20% drop of maximum base shear in the decreasing region of the pushover curve for ductile framed buildings. Although monotonic pushover analysis is preferred due to the simple application procedure, this analysis gives rise to overestimated results by neglecting the cumulative damage effects. In the present study, the acceptabilities of monotonic and cyclic pushover analysis results for the near-collapse performance limit state are determined by comparing with Incremental Dynamic Analysis (IDA) results for a 5-story Reinforced Concrete framed building. IDA is performed to obtain the collapse point, and the near-collapse drift ratios for monotonic and cyclic pushover analysis methods are obtained separately. These two alternative drift ratios are compared with the collapse drift ratio. The correlations of the maximum tensile and compression strain at the base columns and beam plastic rotations with interstory drift ratios are acquired using the nonlinear time history analysis results by the simple linear regression analyses. It is seen that these parameters are highly correlated with the interstory drift ratios, and the results reveal that the near-collapse point acquired by monotonic pushover analysis causes unacceptably high tensile and compression strains at the base columns, as well as large plastic rotations at the beams. However, it is shown that the results of cyclic pushover analysis are acceptable for the near-collapse performance limit state.

Electrical Properties of SrRuO3 Thin Films with Varying c-axis Lattice Constant

  • Chang, Young-J.;Kim, Jin-I;Jung, C.U.
    • Journal of Magnetics
    • /
    • 제13권2호
    • /
    • pp.61-64
    • /
    • 2008
  • We studied the effect of the variation of the lattice constant on the electrical properties of $SrRuO_3$ thin films. In order to obtain films with different volumes, we varied the substrate temperature and oxygen pressure during the growth of the films on $SrTiO_3$ (001) substrates. The films were grown using a pulsed laser deposition method. The X-ray diffraction patterns of the grown films at low temperature and low oxygen pressure indicated the elongation of the c-axis lattice constant compared to that of the films grown at a higher temperature and higher oxygen pressure. The in-plane strain states are maintained for all of the films, implying the expansion of the unit-cell volume by the oxygen vacancies. The variation of the electrical resistance reflects the temperature dependence of the resistivity of the metal, with a ferromagnetic transition temperature inferred form the cusp of the curve being observed in the range from 110 K to 150 K. As the c-axis lattice constant decreases, the transition temperature linearly increases.

A study on compressive strength of concrete in flexural regions of reinforced concrete beams using finite element analysis

  • Cho, Chang-Geun;Hotta, Hisato
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.313-328
    • /
    • 2002
  • Based on the orthotropic hypoelasticity formulation, a triaxial constitutive model of concrete is proposed. To account for increasing ductility in high confinement of concrete, the ductility enhancement is considered using so called the strain enhancement factor. It is also developed a three-dimensional finite element model for reinforced concrete structural members based on the proposed constitutive law of concrete with the smeared crack approach. The concrete confinement effects due to the beam-column joint are investigated through numerical examples for simple beam and structural beam member. Concrete at compression fibers in the vicinity of beam-column joint behaves dominant not only by the uniaxial compressive state but also by the biaxial and triaxial compressive states. For the reason of the severe confinement of concrete in the beam-column joint, the flexural critical cross-section is observed at a small distance away from the beam-column joint. These observations should be utilized for the economic design when the concrete structural members are subjected to high confinement due to the influence of beam-column joint.

모사시편 시험을 통한 감육결함 국부손상기준 개발 (Development of Local Failure Criteria for Well Thinning Defect by Simulated Specimen Tests)

  • 김진원;김도형;박치용;이성호
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.304-312
    • /
    • 2007
  • The objective of this study is to develop a local failure criterion for a wall thinning defect of piping components. For this purpose, a series of tensile tests was performed using several types of simulated specimens with different stress states, including smooth round bar, notched round bar (five different notch radii), and grooved plate (three different groove radii). In addition, finite element (FE) simulations were performed on the simulated specimen tests and the results were compared with the test results. From the comparisons, the equivalent stress and strain corresponding to maximum load and final failure of notched specimens were proposed as failure criteria under tensile load. The criteria were verified by employing them to the estimation of failure of grooved plate specimens that simulate the wall thinning defect. It showed that the proposed criteria accurately estimate the maximum load and final failure of grooved plate specimen tests.

유한요소해석을 위한 고무재료시험 (Experimental Testing of Rubber Materials for Finite Element Analysis)

  • 김완두;김완수;우창수;이학주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.704-709
    • /
    • 2001
  • Experimental methods to determine non-linear properties of rubber materials for finite element analysis is discussed. In simple tension tests, dumbbell specimens are generally used to obtain states of pure tension strain. It is shown that the strip specimens of which length is over 10 times of the width can be also used. In simple compression tests, the effect of the friction between the test specimen and the platens is investigated. the new test method with the tapered platen is proposed in order to overcome the effect of friction and it is verified by experimental and finite element analysis results. In pure shear tests, it is shown that the width of the specimen must be at least 10 times of the height. The mechanical conditioning is suggested to stabilize the properties of the rubber materials. Also, engine mount for automotive is analyzed and experimented for each cases.

  • PDF

불포화토의 거동예측을 위한 구성식 개발(II) -구성식의 개발 및 적용- (Development of Constitutive Model for the Prediction of Behaviour of Unsaturated Soil( II) - Development and application of constitutive model -)

  • 송창섭;장병욱
    • 한국농공학회지
    • /
    • 제37권1호
    • /
    • pp.81-89
    • /
    • 1995
  • The aim of the work described in this paper is to develope a constitutive model for the prediction of an unsaturated Soil and to confirm the application of the model, which is composed of the elastic and plastic part in consideration of the matric suction and the net mean stress. From test results, volume changes and deviator stresses are analyzed at each state and their relationships are formulated. And the application of the model to silty sands is con- firmed by the comparison between test and predicted results. During drying-wetting and loading-unloading processes for isotropic states, the agreement between predicted and test results are satisfactory. And predicted deviator stresses are well agreed with test results in shearing process. Overall acceptable predictions are reproduced in high confining pressure. Usefulness of the model is confirmed for the unsat- urated soil except volumetric strain, which is not well agreed with the test results due to deficiency of dilatancy of the model in low confining pressure. It is, therefore, recom- mended to study the behavior of dilatancy for an unsaturated soil.

  • PDF

고사리의 돌연변이(突然變異) 유발성(誘發性) (Mutagenic Activity by Ames Test of Bracken Grown in Korea)

  • 윤재영;이서래
    • 한국식품과학회지
    • /
    • 제20권4호
    • /
    • pp.558-562
    • /
    • 1988
  • 우리나라에서 오랫동안 식용(食用)하여 온 고사리에 대하여 Salmonella typhimurium을 이용한 Ames test에 의하여 돌연변이 유발성(誘發性)을 조사하였다. 그 결과 생(生)고사리의 증류수 추출물은 낮은 농도에서 TA 1538 균주(菌株)에 대하여 역돌연변이(逆突然變異)를 일으켰으며 높은 농도에서는 독성(毒性)을 강하게 나타냈다. 그러나 $S_9$ mix 첨가시 모든 시험균주에 대하여 돌연변이를 유발시키지 않았고 독성도 나타내지 않았다. 조리(調理)한 고사리의 경우 증류수 추출물의 양은 생고사리의 1/10로 감소하였고 돌연변이 유발능도 검출되지 않았다. 고사리의 70% 에탄올 추출물은 어느 경우에나 돌연변이 유발능을 나타내지 않았다.

  • PDF

Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.431-454
    • /
    • 2016
  • In this paper, the nonlinear static and free vibration analysis of Euler-Bernoulli composite beam model reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) with initial geometrical imperfection under uniformly distributed load using finite element method (FEM) is investigated. The governing equations of equilibrium are derived by the Hamilton's principle and von Karman type nonlinear strain-displacement relationships are employed. Also the influences of various loadings, amplitude of the waviness, UD, USFG, and SFG distributions of carbon nanotube (CNT) and different boundary conditions on the dimensionless transverse displacements and nonlinear frequency ratio are presented. It is seen that with increasing load, the displacement of USFG beam under force loads is more than for the other states. Moreover it can be seen that the nonlinear to linear natural frequency ratio decreases with increasing aspect ratio (h/L) for UD, USFG and SFG beam. Also, it is shown that at the specified value of (h/L), the natural frequency ratio increases with the increasing the values amplitude of waviness while the dimensionless nonlinear to linear maximum deflection decreases. Moreover, with considering the amplitude of waviness, the stiffness of Euler-Bernoulli beam model reinforced by FG-CNT increases. It is concluded that the R parameter increases with increasing of volume fraction while the rate of this parameter decreases. Thus one can be obtained the optimum value of FG-CNT volume fraction to prevent from resonance phenomenon.