• Title/Summary/Keyword: Strain Ratio

Search Result 2,207, Processing Time 0.029 seconds

Changes of Texture and Plastic Strain Ratio of Asymmetrically Rolled and Annealed Cu Sheet (I) (비대칭 압연과 열처리한 Cu 판의 집합조직과 소성변형비 변화 (I))

  • Lee, C.W.;Lee, D.N.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.354-360
    • /
    • 2019
  • The plastic strain ratio is one of the factors that affect the deep drawability of metal sheets. The plastic strain ratio of fully annealed Cu sheet is low because its texture has {001}<100>. In order to improve the deep drawability of Cu sheet, it is necessary to increase the plastic strain ratio of Cu sheet. This study investigate the increase of plastic strain ratio of a Cu sheet after the first asymmetry rolling and annealing, and the second asymmetry rolling and annealing in air and Ar gas conditions. The average plastic strain ratio (Rm) was 0.951 and |ΔR| value was 1.27 in the initial Cu sheet. After the second 30.1% asymmetric rolling and annealing of Cu sheet at 1000℃ in air condition, the average plastic strain ratio (Rm) was 1.03 times higher. However, |ΔR| was 0.12 times lower than that of the initial specimen. After the second 18.8% asymmetric rolling and annealing of Cu sheet at 630℃ in Ar gas condition, the average plastic strain ratio (Rm) was 1.68 times higher and |ΔR| was 0.82 times lower than that of the initial specimen. These results are attributed to the change of the texture of Cu sheet due to the different annealing conditions.

Texture and Plastic Strain Ratio Changes of Hot Asymmetrically Rolled AA1050 Al Sheet (열간 비대칭 압연한 AA1050 Al 판재의 집합조직과 소성변형비 변화)

  • Hamrakulov, B.;Lee, C.W.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.287-293
    • /
    • 2019
  • The plastic strain ratio is one of the factors of the deep drawability of metal sheets. The plastic strain ratio of Al sheet is low value. Therefore, it is necessary to increase the plastic strain ratio in order to improve the deep drawability of the Al sheet. This study investigated the increase in the plastic strain ratio and the texture change of AA1050 Al sheet after the hot asymmetric rolling. The average plastic strain ratio of initial AA1050 Al sheets was 0.41. After 84% hot asymmetric rolling at $400^{\circ}C$, the average plastic strain ratio was 0.77. The average plastic strain ratio of 84% hot asymmetrically rolled AA1050 Al sheet at $400^{\circ}C$ is 1.9 times higher than that of initial AA1050 Al sheet. The ${\mid}{\Delta}R{\mid}$ of 84% hot asymmetrically rolled AA1050 Al sheet at $400^{\circ}C$ is 1/2 times lower than that of initial AA1050 Al sheet. This result is due to the development of the intensity of the ${\gamma}-fiber$ texture and the decrease of the intensity of {001}<100> texture after the hot asymmetric rolling of AA1050 Al sheet.

Texture and Plastic Strain Ratio Changes of Hot Asymmetrically Rolled AA3003 Sheet (열간 비대칭 압연한 AA3003 판재의 집합조직과 소성변형비 변화)

  • Hamrakulov, B.;Lee, C.W.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.281-286
    • /
    • 2019
  • The plastic strain ratio is one of the factors of the deep drawability of metal sheets. The plastic strain ratio of Al sheet is low value. Therefore, it is necessary to increase the plastic strain ratio in order to improve the deep draw ability of the Al sheet. This study investigated the increase of the plastic strain ratio and the texture change of AA3003 sheet after the hot asymmetric rolling. The average plastic strain ratio of the initial AA3003 sheets was 0.69. After 83% hot asymmetric rolling at $200^{\circ}C$, the average plastic strain ratio was 0.83. The average plastic strain ratio of the 83% hot asymmetrically rolled AA3003 sheet at $200^{\circ}C$ is 1.2 times higher than that of the initial AA3003 sheet. The ${\mid}{\Delta}R{\mid}$ of 83% hot asymmetrically rolled AA3003 sheet at $200^{\circ}C$ is 0.83 times lower than that of the initial AA3003 sheet. This result is due to the development of the intensity of ${\gamma}-fiber$ texture and reduces the intensity of {001}<110> and {001}<100> textures after hot asymmetric rolling of AA3003 sheet.

Consolidation Characteristics at the Constant Rate of Strain(CRS) Test (일정변형률(CRS) 시험에서의 압밀특성)

  • Lee, Dal-Won;Kim, Si-Jung
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.491-499
    • /
    • 2010
  • This study was carried out to investigate the consolidation characteristics of the remolded clay by the oedometer and the constant rate of strain(CRS) consolidation tests. As the rate of strain increases, the settlement rapidly decreased. As the ratio of the sand in the specimen increases, its effect on the rate of strain to the settlement was reduced. As the effective stress increased, the void ratio decreased, while the rate of strain increased, it did not show a clear variation. The reduction of the void ratio was shown to be less than the oedometer test. The coefficient of vertical consolidation with effective stress showed very large variation around preconsolidation stress, but the rate of strain did not provide significant effects. The rate of strain with effective stress gradually decreased at all tests and mixed ratio of sand. The rate of strain at the constant rate of strain tests showed smaller than in the oedometer test. The coefficient of consolidation at the constant rate of strain tests showed much more increase than in the oedometer test. The ratio of the vertical coefficient of consolidation by the odometer and the constant rate of strain tests showed a large difference according to various tests method and mixing ratio. Therefore, it is recommended that careful attention should be paid to designing the soft ground improvement.

PLASTIC STRAIN RATIOS AND PLANAR ANIOSOTROPY OF AA5182/POLYPROPYLENE/AA5182 SANDWICH SHEETS

  • KIM K. J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.259-268
    • /
    • 2005
  • In order to analyze the sheet drawability, the measurement of the plastic strain ratio was carried out for the 5182 aluminum alloy sheets in which were cold rolled without lubrication and subsequent recrystallization annealing. The average plastic strain ratio of the 5182 aluminum sheets was 1.50. It was considered that the higher plastic strain ratio was resulted from the ND//<111> component evolved during rolling and maintained during annealing. The AA5182/polypropylene/AA5182 (AA/PP/AA) sandwich sheets of the 5182 aluminum alloy skin sheet and the polypropylene core sheet with high formability have been developed for application for automotive body panels in future light weight vehicles with significant weight reduction. The AA/PP/AA sandwich sheets were fabricated by the adhesion of the core sheet and the upper and lower skin sheets. The AA/PP/AA sandwich sheet had high plastic strain ratio (1.58), however, the planar anisotropy of the sandwich sheet was little changed after fabrication. The optimum combination of directionality of the upper and lower skin sheets having high plastic strain ratio and low planar anisotropy was calculated theoretically and an advanced process for producing the sandwich sheets with high plastic strain ratio was proposed. The developed sandwich sheets have a high average plastic strain ratio of 1.55 and a low planar anisotropy of 0.17, which was improved more by 3.2 times than that of 5182 aluminum single sheet.

Strain Transmission Ratio of a Distributed Optical Fiber Sensor with a Coating Layer (코팅된 분포형 광섬유 센서의 변형률 전달률)

  • Yoon, S.Y.;Kown, I.B.;Yu, H.S.;Kim, E.
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.429-434
    • /
    • 2018
  • We investigate strain transmissions of a surface bonded distributed optical fiber sensor considering strain variation according to positions. We first derive a strain transmission ratio depending on a wavelength of a strain distribution of the host structure from an analysis model. The strain transmission ratio is compared with numerical results obtained from the finite element method using ABAQUS. We find that the analytical results agree well with the numerical results. The strain transmission ratio is a function of a wavelength, i.e. the strain transmission ratio decreases (increases) as the wavelength of the host strain decreases (increases). Therefore, if an arbitrary strain distribution containing various wavelengths is given to a host structure, a distorted strain distribution will be observed in the distributed optical fiber sensor compare to that of the host structure, because each wavelength shows different strain transmission ratio. The strain transmission ratio derived in this study will be useful for accurately identifying the host strain distribution based on the signal of a distributed optical fiber sensor.

Experimental investigation of the stress-strain behavior of FRP confined concrete prisms

  • Hosseinpour, F.;Abbasnia, R.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.177-192
    • /
    • 2014
  • One of the main applications of FRP composites is confining concrete columns. Hence identifying the cyclic and monotonic stress-strain behavior of confined concrete columns and the parameters influencing this behavior is inevitable. Two significant parameters affecting the stress-strain behavior are aspect ratio and corner radius. The present study aims to scrutinize the effects of corner radius and aspect ratio on different aspects of stress-strain behavior of FRP confined concrete specimens (rectangular, square and circular). Hence 44 FRP confined concrete specimens were tested and the results of the tests were investigated. The findings indicated that for specimens with different aspect ratios, the relationship between the ultimate stress and the corner radius is linear and the variations of the ultimate stress versus the corner radius decreases as a result of an increase in aspect ratio. It was also observed that increase of the corner radius results in increase of the compressive strength and ultimate axial strain and increase of the aspect ratio causes an increase of the ultimate axial strain but a decrease of the compressive strength. Investigation of the ultimate condition showed that the FRP hoop rupture strain is smaller in comparison with the one obtained from the tensile coupon test and also the ultimate axial strain and confined concrete strength are smaller when a prism is under monotonic loading. Other important results of this study were, an increase in the axial strain during the early stage of unloading paths and increase of the confining effect of FRP jacket with the increase and decrease of the corner radius and aspect ratio respectively, a decrease in the slope of reloading branches with cycle repetitions and the independence of this trend from the variations of the aspect ratio and corner radius and also quadric relationship between the number of each cycle and the plastic strain of the same cycle as well as the independence of this relationship from the aspect ratio and corner radius.

Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model

  • Khan, Qasim S.;Sheikh, M. Neaz;Hadi, Muhammad N.S.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.921-947
    • /
    • 2016
  • Concrete Filled Fibre Reinforced Polymer Tube (CFFT) for new columns construction has attracted significant research attention in recent years. The CFFT acts as a formwork for new columns and a barrier to corrosion accelerating agents. It significantly increases both the strength capacity (Strength enhancement ratio) and the ductility (Strain enhancement ratio) of reinforced concrete columns. In this study, based on predefined selection criteria, experimental investigation results of 134 circular CFFT columns under axial compression have been compiled and analysed from 599 CFFT specimens available in the literature. It has been observed that actual confinement ratio (expressed as a function of material properties of fibres, diameter of CFFT and compressive strength of concrete) has significant influence on the strength and ductility of circular CFFT columns. Design oriented models have been proposed to compute the strength and strain enhancement ratios of circular CFFT columns. The proposed strength and strain enhancement ratio models have significantly reduced Average Absolute Error (AAE), Mean Square Error (MSE), Relative Standard Error of Estimate (RSEE) and Standard Deviation (SD) as compared to other available strength and strain enhancement ratios of circular CFFT column models. The predictions of the proposed strength and strain enhancement ratio models match well with the experimental strength and strain enhancement ratios investigation results in the compiled database.

A Study on the Measurement Methods of Plastic Strain Ratio in Automotive sheet steel (자동차용 강판의 소성변형비 측정 방법 연구)

  • 김인수;김인수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.85-92
    • /
    • 1996
  • The Measurement method of the plastic strain ratio is various in Automotive sheet steel. In this paper, the measurement of the plastic strain are used two different methods, ASTM E 517 method and the automatic strain measurement tensile specimen during the tensile test, and compared the plastic strain ratios from the two methods. The experimental results showed that the measured plastic strain ratios from the automatic strain measurement method are coincide with that from the ASTM E 517 standard measurement in various specimens. Therefore, automatic strain measurement method by two extensometers shows good accuracy. Also, the strain dependance of plastic strain ratios could be recorded by the computer continuously and anisotropy of the strength coefficient, K, and strain hardening exponent, n ,could be compared with each direction automatically through the use of automatic strain measurement system.

  • PDF

Texture and Plastic Strain Ratio Changes during a 2 Step Asymmetric Rolling and Annealing of AA5083 Al Alloy Sheet (2단계 비대칭 압연과 열처리한 AA5083 Al 합금판재의 집합조직과 소성변형비 변화)

  • Jeong, H.B.;Lee, J.H.;Kim, G.H.;Nam, S.K.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.82-87
    • /
    • 2014
  • The plastic strain ratio is one of the factors that affect the deep drawability of Al alloy sheet. The deep drawability of Al alloy sheet is limited because of its low plastic strain ratio. Therefore an increase in the plastic strain ratio to improve the deep drawability of Al alloy sheet is needed. The current study investigated the increase of the plastic strain ratio and the change in texture of AA5083 Al alloy sheet after a 2 step asymmetric rolling with heat treatments. The average plastic strain ratio of initial AA5083 Al alloy sheets was 0.83. After the first asymmetric rolling step of 88% deformation and subsequent heat treatment at $320^{\circ}C$ for 10 minutes the value was still 0.83. After the second asymmetric rolling of 14% reduction and subsequent heat treatment at $330^{\circ}C$ for 10 minutes the plastic strain ratio rose to 1.01. The average plastic strain ratio after the 2 step asymmetric rolling and heat treatment is 1.2 times higher than that of initial AA5083 Al alloy sheet. This result is related to the development of ND/<111> texture component after the second asymmetric rolling and heat treatment.