• 제목/요약/키워드: Strain Rate Hardening

검색결과 199건 처리시간 0.024초

고온압출한 AZ 31 마그네슘 합금의 압축변형 중 집합조직과 미세조직의 발달 (Development of Textures and Microstructures during Compression in a Hot-Extruded AZ31 Mg Alloy)

  • 정병조;이명재;박용범
    • 대한금속재료학회지
    • /
    • 제48권4호
    • /
    • pp.305-314
    • /
    • 2010
  • The development of textures and microstructures during plastic deformation in a hot-extruded AZ 31 Mg alloy was investigated using a compression test with such parameters as deformation temperature, strain rate. It was observed from true stress-strain curves that twinning involves changes of the flow stresses. In the early stages of deformation at temperatures lower than $200^{\circ}C$, the occurrence of twins resulted in a decrease of the work-hardening rate, which increased drastically at a true strain of -0.05. The evolution of the deformation textures were assessed with the aid of EBSD analyses in terms of the competition between twinning and slip activity.

A constitutive model for fiber-reinforced extrudable fresh cementitious paste

  • Zhou, Xiangming;Li, Zongjin
    • Computers and Concrete
    • /
    • 제8권4호
    • /
    • pp.371-388
    • /
    • 2011
  • In this paper, time-continuous constitutive equations for strain rate-dependent materials are presented first, among which those for the overstress and the consistency viscoplastic models are considered. By allowing the stress states to be outside the yield surface, the overstress viscoplastic model directly defines the flow rule for viscoplastic strain rate. In comparison, a rate-dependent yield surface is defined in the consistency viscoplastic model, so that the standard Kuhn-Tucker loading/unloading condition still remains true for rate-dependent plasticity. Based on the formulation of the consistency viscoplasticity, a computational elasto-viscoplastic constitutive model is proposed for the short fiber-reinforced fresh cementitious paste for extrusion purpose. The proposed constitutive model adopts the von-Mises yield criterion, the associated flow rule and nonlinear strain rate-hardening law. It is found that the predicted flow stresses of the extrudable fresh cementitious paste agree well with experimental results. The rate-form constitutive equations are then integrated into an incremental formulation, which is implemented into a numerical framework based on ANSYS/LS-DYNA finite element code. Then, a series of upsetting and ram extrusion processes are simulated. It is found that the predicted forming load-time data are in good agreement with experimental results, suggesting that the proposed constitutive model could describe the elasto-viscoplastic behavior of the short fiber-reinforced extrudable fresh cementitious paste.

단열 전단 밴드의 유한요소 해석 (Finite Element Anmllysis of Adiabatic Shear Band)

  • 유요한;전기영;정동택
    • 대한기계학회논문집
    • /
    • 제16권8호
    • /
    • pp.1519-1529
    • /
    • 1992
  • 본 연구에서는 단열 전단 밴드의 특성 규명을 위하여 특별히 고안된 계단 형 상 시편(stepped specimen)의 수치해석을 통하여 단열 전단 밴드의 형성과 성장(init- iation and growth of adiabatic shear band)에 관한 체계적 해석을 시도해 보았다. 금번 논문에서는 우선 격자 크기(mesh size)와 충격 속도(impact velocity)가 단열 전 단 밴드의 형성 및 성장에 미치는 영향과 제반 특성을 규명할 계획이며 차후 재료의 기하학적 형상 등이 단열 전단 밴드의 형성 및 성장에 미치는 영향에 대해서도 단계적 연구를 시도할 계획이다. 해석을 위하여 가공경화효과, 변형률 속도 경화효과(stra- in rate hardening effect), 열적연화효과 등을 고려할 수 있는 구성 방정식(constit- utive equation)을 갖춘 엑스플리시트 시간적분 유한요소 코드(explicit time integr- ation finite element code)를 사용하였으며 기존의 연구 결과와는 달리 어떠한 인위 적 결함도 해석에 사용하지 않았다.

NUMERICAL SIMULATION OF CONVEX AND CONCAVE TUBES WITH CONSIDERATION OF STRAIN RATE SENSITIVITY

  • Ye, B.W.;Oh, S.;Cho, Y.B.;Sin, H.C.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.193-201
    • /
    • 2007
  • The present paper deals with the application of the explicit finite element code, PAM-CRASH, to simulate the crash behavior of steel thin-walled tubes with various cross-sections subjected to axial loading. An isotropic elastic, linear strain-hardening material model was used in the finite element analysis and the strain-rate sensitivity of mild steel was modeled by using the Cowper-Symonds constitutive equation with modified coefficients. The modified coefficients were applied in numerical collapse simulations of 11 types of thin-walled polygon tubes: 7 convex polygon tubes and 4 concave polygon tubes. The results show that the thin hexagonal tube and the thick octagonal tube showed relatively good performance within the convex polygon tubes. The crush strengths of the hexagonal and octagonal tubes increased by about 20% and 25% from the crush strength of the square tube, respectively. Among the concave tubes, the I-type tube showed the best performance. Its crush strength was about 50% higher than the crush strength of the square tube.

액체로켓 연소기용 구리합금의 열/기계적 특성에 관한 실험적 연구 (Experimental Study on the Physical and Mechanical Properties of a Copper Alloy for Liquid Rocket Combustion Chamber Application)

  • 류철성;백운봉;최환석
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1494-1501
    • /
    • 2006
  • Mechanical and physical properties of a copper alloy for a liquid rocket engine(LRE) combustion chamber liner application were tested at various temperatures. All test specimens were heat treated with the condition they might experience during actual fabrication process of the LRE combustion chamber. Physical properties measured include thermal conductivity, specific heat and thermal expansion data. Uniaxial tension tests were preformed to get mechanical properties at several temperatures ranging from room temperature to 600$^{\circ}C$. The result demonstrated that yield stress and ultimate tensile stress of the copper alloy decreases considerably and strain hardening increases as the result of the heat treatment. Since the LRE combustion chamber operates at higher temperature over 400$^{\circ}C$, the copper alloy can exhibit time-dependent behavior. Strain rate, creep and stress relaxation tests were performed to check the time-dependent behavior of the copper alloy. Strain rate tests revealed that strain rate effect is negligible up to 400$^{\circ}C$ while stress-strain curve is changed at 500$^{\circ}C$ as the strain rate is changed. Creep tests were conducted at 250$^{\circ}C$ and 500$^{\circ}C$ and the secondary creep rate was found to be very small at both temperatures implying that creep effect is negligible for the combustion chamber liner because its operating time is quite short.

AISI 316 스테인리스강의 고온 변형특성에 관한 연구 (Rot Deformation Behavior of AISI 316 Stainless Steel)

  • 김성일;유연철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.293-296
    • /
    • 2001
  • The dynamic softening mechanisms of AISI 316, AISI 304 and AISI 430 stainless steels were studied with torsion test in the temperature range of $900 - 1200^{\circ}C$ and the strain rate range of $5.0x10^{-2}-5.0x10^0/sec$. The austenitic stainless steels, such as AISI 316 and AISI 304 were softened by dynamic recrystallization (DRX) during hot deformation. Also, the evolutions of flow stress and microstructure of AISI 430 ferritic stainless steel show the characteristics of continuous dynamic recrystallization (CDRX). To establish the quantitative equations for DRX of AISI 316 stainless steel, the evolution of flow stress curve with strain was analyzed. The critical strain (${\varepsilon}_c$) and strain for maximum softening rate (${\varepsilon}^{*}$) could be confirmed by the analysis of work hardening rate ($d{\sigma}/d{\varepsilon}={\theta}$). The volume fraction of dynamic recrystallization ($X_{DRX}$) as a function of processing variables, such as strain rate ( $\varepsilon$ ), temperature (T), and strain ( $\varepsilon$ ) were established using the ${\epsilon}_c$ and ${\varepsilon}^{*}$. For the exact prediction the ${\varepsilon}_c,\;{\varepsilon}^{*}$ and Avrami' exponent (m') were quantitatively expressed by dimensionless parameter, Z/A, respectively. It was found that the calculated results were agreed with the experimental data for the steels at my deformation conditions. Also, we can reasonably conclude that the DRX, CDRX and grain refinement of stainless steels can be achieved by large strain deformation at high Z parameter condition.

  • PDF

심해저용 전기 저항 용접 소구경 송유관 소재의 온도 및 변형률 속도 에 따른 유동 응력 특성 (Flow Stress Properties of Electric Resistance Welded Small-Sized Subsea Pipeline Subjected to Temperature and Strain Rate Variations)

  • 김영훈;박성주;윤성원;정준모
    • 한국해양공학회지
    • /
    • 제29권3호
    • /
    • pp.241-248
    • /
    • 2015
  • A subsea pipeline for oil/gas transportation or gas injection is subjected to extreme variations in internal pressure and temperature, which can involve a strain rate effect on the pipeline material. This paper describes the flow stress characteristics of a pipeline material called API 5L X52N PSL2, using and experimental approach. High-speed tensile tests were carried out for two metal samples taken from the base and weld parts. The target temperature was 100℃, but two other temperature levels of –20℃and 0℃ were taken into account. Three strain rates were also considered for each temperature level: quasi static, 1/s, and 10/s. Flow stress data were proposed for each temperature level according to these strain rates. The dynamic hardening behaviors of the base and weld metals appeared to be nonlinear on the log-scale strain rate axis. A very high material constant value was required for the Cowper-Symonds constitutive equation to support the experimental results.

동적 물성치를 고려한 V.I. 충격인자의 영향 분석 (Parameter Study for the Analysis of Impact Characteristics considering Dynamic Material Properties)

  • 임지호;송정한;허훈;박우진;오일성;최종웅
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.945-950
    • /
    • 2001
  • Vacuum interrupters that is used in various switchgear components such as circuit breakers, distribution switches, contactors, etc. spreads the arc uniformly over the surface of the contacts. The electrode of vacuum interrupters is used sintered Cu-Cr material satisfied with good electrical and mechanical characteristics. Because the closing velocity is 1-3m/s, the deformation of the material of electrodes depends on the strain rate and the dynamic behavior of the sintered Cu-Cr material is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain-rate is obtained from the split Hopkinson pressure bar test using cylinder type specimens. Experimental results from both quasi-static and dynamic compressive tests with the split Hopkinson pressure bar apparatus are interpolated to construct the Johnson-Cook equation as the constitutive relation that should be applied to simulation of the dynamic behavior of electrodes. To evaluate impact characteristic of a vacuum interrupter, simulation is carried out with five parameters such as initial velocity, added mass of a movable electrode, wipe spring constant, initial offset of a wipe spring and virtual fixed spring constant.

  • PDF

스테인리스 강 STS305의 디프 드로잉 가공에 관한 실험적 연구 (Experimental study on the severe deep drawing for complex cylindrical housing of STS 305 stainless steel)

  • 김두환
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.439-444
    • /
    • 1998
  • Recently many automotive parts have been made with stainless steels by deep drawing processes, But there are various problems occurred in deep drawing works of stainless steels compared with low carbon steels. For the severe deep drawing of complex cylindrical housing optimum process planning is required to eliminate intermediate annealing improve shape accuracy and maintain surface integrity without drawing defects such as tears wrinkles and scratches or galling. Therefore in this study a sample process planning of the severe of the severe deep drawing process is applied to a complex cylindrical housing needed for a 6 multi-stepped deep drawing of type STS 305 . A series of experiments are performed to investigate optimum process variables such as drawing rate radius and clearance. Through experiments the variations of the thickness strain distribution and hardness distribution in each drawing step are observed. Also the effects of other factors on formability such as drawing oil, blank holding force and die geometry are examined and discussed.

  • PDF

Design of Metal Cored Wire for Erosion Resistant Overlay Welding

  • Kim, Jun-Ki;Kim, In-Ju;Kim, Ki-Nam;Kim, Ji-Hui;Kim, Seon-Jin
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.202-204
    • /
    • 2009
  • Erosion is a common failure mode of materials frequently encountered in plant and power industry. Although the erosion resistance of Fe-base alloy has been inferior to the other expensive materials, it is expected that the strain-induced martensitic transformation can impart high erosion resistance to Fe-base alloy. The key technology to develop Fe-base metal cored welding wire for erosion resistant overlay welding may include the strain-induced metallurgy for hardening rate control and the welding flux metallurgy for dilution control. Sophisticated studies showed that the strain-induced martensitic transformation behavior was related to the critical strain energy which was dependent on the alloy composition. Dilution and bead shape of overlay weld were proved to be affected by metal transfer mode during gas tungsten arc welding and elements in welding fluxes. It was considered that the highly erosion resistant Fe-base overlay weld could be achieved by precise control of alloy composition to have proper level of critical strain energy for energy absorption and welding flux formulation to have small amount of deoxidizing metallic elements for dilution.

  • PDF