• Title/Summary/Keyword: Strain Controlled

Search Result 466, Processing Time 0.031 seconds

Finite Element Simulation of Hysteretic Behavior of Structural Stainless Steel under Cyclic Loading (반복하중을 받는 스테인리스강의 이력거동 해석모델 개발)

  • Jeon, Jun-Tai
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.186-197
    • /
    • 2019
  • Purpose: This study intends to develop a nonlinear cyclic plasticity damage model in the framework of finite element formulation, which is capable of taking large deformation effects into account, in order to accurately predict the hysteretic behavior of stainless steel structures. Method: The new cyclic constitutive equations that utilize the combined isotropic-kinematic hardening rule for plastic deformation is incorporated into the damage mechanic model in conjunction with the large strain formulation. The damage growth law is based on the experimental observations that the evolution of microvoids yields nonlinear damage accumulation with plastic deformation. The damage model parameters and the procedure for their identification are presented. Results and Conclusion: The proposed nonlinear damage model has been verified by simulating uniaxial strain-controlled monotonic and cyclic loading tests, and successfully applied to a thin-walled stainless steel pipe subjected to constant and alternating strain-controlled cyclic loadings.

Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading (저사이클 피로하중을 받는 316L 스테인리스강의 피로수명 분석 및 예측)

  • Oh, Hyeong;Myung, NohJun;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1027-1035
    • /
    • 2016
  • In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

Mechanisms of Time-dependent Plastic Deformation of Eutectoid and Hypereutectoid Steels at Low T/Tm Temperatures (저 T/Tm 온도에서 공석강 및 과공석강의 시간의존성 소성변형 기구)

  • Choi, B.H.;Chung, K.C.;Park, K.T.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.359-365
    • /
    • 2016
  • The rate-controlling mechanisms for time-dependent plastic deformation of eutectoid and hyper-eutectoid pearlitic steels at low $T/T_m$ temperatures were explored. The strain rate - stress data obtained from a series of constant load tensile tests at $0.25{\sim}0.30T/T_m$ were applied to the power law, the lattice friction controlled plasticity, and the obstacle controlled plasticity. Of these models, the obstacle controlled plasticity was found to best-describe the rate-controlling mechanism for time-dependent plastic deformation of two steels at low $T/T_m$ temperatures in terms of the activation energy for overcoming the obstacles against dislocation glide in ferrite. The deformed microstructures revealed the dislocation forests of a high density as the main obstacles. In addition, the obstacle controlled plasticity well-explained the effects of cementite on the $0^{\circ}K$ flow stress of two steels.

Rheology of concentrated xanthan gum solutions: Oscillatory shear flow behavior

  • Song Ki-Won;Kuk Hoa-Youn;Chang Gap-Shik
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.67-81
    • /
    • 2006
  • Using a strain-controlled rheometer, the dynamic viscoelastic properties of aqueous xanthan gum solutions with different concentrations were measured over a wide range of strain amplitudes and then the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a broad range of angular frequencies. In this article, both the strain amplitude and concentration dependencies of dynamic viscoelastic behavior were reported at full length from the experimental data obtained from strain-sweep tests. In addition, the linear viscoelastic behavior was explained in detail and the effects of angular frequency and concentration on this behavior were discussed using the well-known power-law type equations. Finally, a fractional derivative model originally developed by Ma and Barbosa-Canovas (1996) was employed to make a quantitative description of a linear viscoelastic behavior and then the applicability of this model was examined with a brief comment on its limitations. Main findings obtained from this study can be summarized as follows: (1) At strain amplitude range larger than 10%, the storage modulus shows a nonlinear strain-thinning behavior, indicating a decrease in storage modulus as an increase in strain amplitude. (2) At strain amplitude range larger than 80%, the loss modulus exhibits an exceptional nonlinear strain-overshoot behavior, indicating that the loss modulus is first increased up to a certain strain amplitude(${\gamma}_0{\approx}150%$) beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (3) At sufficiently large strain amplitude range (${\gamma}_0>200%$), a viscous behavior becomes superior to an elastic behavior. (4) An ability to flow without fracture at large strain amplitudes is one of the most important differences between typical strong gel systems and concentrated xanthan gum solutions. (5) The linear viscoelastic behavior of concentrated xanthan gum solutions is dominated by an elastic nature rather than a viscous nature and a gel-like structure is present in these systems. (6) As the polymer concentration is increased, xanthan gum solutions become more elastic and can be characterized by a slower relaxation mechanism. (7) Concentrated xanthan gum solutions do not form a chemically cross-linked stable (strong) gel but exhibit a weak gel-like behavior. (8) A fractional derivative model may be an attractive means for predicting a linear viscoelastic behavior of concentrated xanthan gum solutions but classified as a semi-empirical relationship because there exists no real physical meaning for the model parameters.

Stress-Strain Behavior of Clays under Repeated Loading (반복재하(反復載荷)에 의한 점성토(粘性土)의 응력변형특성(應力變形特性))

  • Cho, Jae Hong;Kang, Yea Mook;Ryu, Neung Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.329-344
    • /
    • 1987
  • This paper described the behavior under repeated loading in triaxial compression test on clay. The experiment was conducted to investigate the influence of controlled various over-consolidation ratio and compaction energy, on the stress-strain behavior of clays. 1. The difference of deviator stress during repeated loading was greatly appeared at large strain. And pore water pressure was decreased at initial of unloading, but it was increased again before long. 2. The recoverable elastic strain (${{\Delta}{\varepsilon}e}$) and the slope of un-reloading were decreased with the increment of over-consolidation ratio (OCR). 3. The recoverable elastic strain (${{\Delta}{\varepsilon}e}$) was increased with the increment of strain rate but it was decreased with the increment of strain in strain rate tests. The slope of un-reloading (Eur) tends to increase with the increment of strain rate and it was decreased with the increment of strain. 4. The recoverable elastic strain was greatly increased with the increment of compaction energy and it slightly tends to decrease with the increment of strain on various compaction energy. The slope of un-reloading was not appeared markedly with increment of compaction energy but it tends to decrease with the increment of strain generally.

  • PDF

Influence of Mo Addition on High Temperature Deformation Behavior of L12 Type Ni3Al Intermetallics

  • Han, Chang-Suk;Jang, Tae-Soo
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.167-172
    • /
    • 2016
  • The high temperature deformation behavior of $Ni_3Al$ and $Ni_3(Al,Mo)$ single crystals that were oriented near <112> was investigated at low strain rates in the temperature range above the flow stress peak temperature. Three types of behavior were found under the present experimental conditions. In the relatively high strain rate region, the strain rate dependence of the flow stress is small, and the deformation may be controlled by the dislocation glide mainly on the {001} slip plane in both crystals. At low strain rates, the octahedral glide is still active in $Ni_3Al$ above the peak temperature, but the active slip system in $Ni_3(Al,Mo)$ changes from octahedral glide to cube glide at the peak temperature. These results suggest that the deformation rate controlling mechanism of $Ni_3Al$ is viscous glide of dislocations by the <110>{111} slip, whereas that of $Ni_3(Al,Mo)$ is a recovery process of dislocation climb in the substructures formed by the <110>{001} slip. The results of TEM observation show that the characteristics of dislocation structures are uniform distribution in $Ni_3Al$ and subboundary formation in $Ni_3(Al,Mo)$. Activation energies for deformation in $Ni_3Al$ and $Ni_3(Al,Mo)$ were obtained in the low strain rate region. The values of the activation energy are 360 kJ/mol for $Ni_3Al$ and 300 kJ/mol for $Ni_3(Al,Mo)$.

Plastic Deformation Behavior Of Al-Mg-Si Alloy At The Elevated Temperature (Al-Mg-Si합금의 고온 소성 변형 거동)

  • 권용남;이영선;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.172-175
    • /
    • 2003
  • Thermomechanical behavior of Al-Mg-Si alloys have been studied to investigate the effect of microstructural features such as pre-existing substructure and distribution of particles on the deformation characteristics. The controlled compression tests have been carried out to get the basic information on how the alloy responds to temperature, strain amount and strain rate. Then hot forging of Al-Mg-Si alloys has been carried out and analyzed by the comparison with the compression tests. Microstructural features after forging have been discussed in terms of the thermomechanical response of Al-Mg-Si alloys. As already well mentioned, we have found that the deformation of Al-Mg-Si at the elevated temperature brought the recovered structure on most conditions. In a certain time, however, abnormally large grains have been found as a result of deformation assisted grain growth, which means that hot forging of Al-Mg-Si alloys could lead to a undesirable microstructural variation and the consequent mechanical properties such as fatigue strength.

  • PDF

Die-Speed Optimization in Titanium-Disk Near-Net Shape Hot-Forging (티타늄디스크 근사정형 열간단조시 금형속도의 최적화)

  • 박종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.896-907
    • /
    • 1995
  • Titanium 6242(.alpha. + .betha.) alloy has a good strength/weight ratio and is used for aircraft components such as engine disks and compressor blades. When this material is forged at an elevated temperature, the process parameters should be carefully controlled because the process window of this material is quite narrow. In the present investigation, a rigid-thermoviscoplastic finite element method is used to predict the deformation behavior and temperature/strain distributions in an engine disk during near-net shape hot forging. The purpose of the investigation is to obtain a proper ram speed profile, assuming the hydraulic press used in the forging is capable of varying ram speed during loading. In result, it was found that the ram speed at constant strain-rate of 0.5/sec shows a sound deformation behavior, a relatively uniform deformation and a good temperature distribution. This information is also valuable in predicting resulting microstructures in the disk.

Hydrogen Production by Biological Processes

  • Shin Jong-Hwan;Park Tai Hyun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.101-104
    • /
    • 2004
  • Among biological hydrogen production processes, fermentative processes have some advantages. In this research, the hydrogen producing bacterium was isolated from domestic landfill area and identified as Enterobacter sp. The strain was named Enterobacter sp. SNU-1453. Important parameters for the hydrogen process include pH, temperature, concentration of initial glucose, and kind of sugars. The pH of the culture medium significantly decreased as fermentation proceeded due to the accumulation of various organic acids, and this inhibited the $H_2$ production seriously. When pH was controlled at pH 7.0, hydrogen production was 2614.5 m1/1 in 17 hours. The increase of glucose concentration resulted in higher $H_2$ production. The productivity of this strain was 6.87 mmol $H_2/l$ per hi on concentration of 25g glucose/l. Enterobacter sp. SNU-1453 could utilize various sugars. These results indicate that Enterobacter sp. SNU-1453 has a high potential as a fermentative $H_2$ producer.

  • PDF

A problem solving plan in automotive panel forming using the automated strain analysis and measurement environment (자동변형율 측정장치를 이용한 자동차용 실판넬의 문제점해결 방안)

  • 서만석;김형준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.119-128
    • /
    • 1994
  • Until recently, Stamping tool manufacturing depend on skilled designers and technicians, because it has many parameters. So, Try-out time not controlled. We now apply CAE, preliminary experiment, material database and automated stain measurement in stamping tool manufacturing for concurrent engineering that decreases product development circle time, saves cost, improves product reliability. Automated strain analysis and measurement environment gives very accurately informations to technicians of stamping tool manufacturing. They analysed the part in problem and appled to results in Try-out step.