• Title/Summary/Keyword: Strain Capacity

Search Result 981, Processing Time 0.023 seconds

Egg Production of Clonorchis sinensis in Different Strains of Inbred Mice (근교계 마우스에서 간흡충 기생기간과 산란력의 변동)

  • Kim, Jong-In;Jeong, Dong-Il;Choe, Dong-Ik
    • Parasites, Hosts and Diseases
    • /
    • v.30 no.3
    • /
    • pp.169-176
    • /
    • 1992
  • In order to compare the intraspecific variation in host-parasite relationship of Clonorchis sinensis, six strains of inbred mice, ICR, DDY, GPC, BALB/c, nude and DS, were infected orally with 20 metacercariae of C. sinensis. The biologic incubation period of C. sinensis was the shortest in DDY mice, 21.2 days in average, followed by GPC 21.4, BALB/c and DS 23.2, ICR and nude 23.4 days, respectively. The fertile period of the cuke was also the longest in the DDY strain, 164 days on average, followed by GPC 132, BALB/c 97, nude 37, DS 32 and ICR 28 days. The egg-laying capacity of the cuke in DDY and GPC was relatively high and stable compared with the other four strains of mice. It was found that there are intraspecific variations in biologic incubation period, fertile period, and fecundity of C. sinensis. The DDY mouse is likely to be the most suitable experimental animal among the six strains of the mice tested. Key words: Mouse strain, Clonorchis sinensis, egg-laying capacity.

  • PDF

Inelastic buckling of tapered members with accumulated strain

  • Kim, M.C.;Lee, G.C.;Chang, K.C.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.611-622
    • /
    • 1995
  • This paper is concerned with inelastic load carrying capacity of tapered steel members with or without accumulated plastic strains resulted from previous loading histories. A finite element program is developed using stiffness matrices of tapered members and is applicable for analyses with material and geometric nonlinearity. Results of analyses are compared with other available solutions and with experimental results.

Rotational capacity of H-shaped steel beams under cyclic pure bending

  • Jia, Liang-Jiu;Tian, Yafeng;Zhao, Xianzhong;Tian, Siyuan
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.123-140
    • /
    • 2019
  • This paper presents experimental study on effects of width-to-thickness ratio and loading history on cyclic rotational capacity of H-shaped steel beams subjected to pure bending. Eight Class 3 and 4 H-shaped beams with large width-to-thickness ratios were tested under four different loading histories. The coupling effect of local buckling and cracking on cyclic rotational capacity of the specimens was investigated. It was found that loss of the load-carrying capacity was mainly induced by local buckling, and ductile cracking was a secondary factor. The width-to-thickness ratio plays a dominant effect on the cyclic rotational capacity, and the loading history also plays an important role. The cyclic rotational capacity can decrease significantly due to premature elasto-plastic local buckling induced by a number of preceding plastic reversals with relative small strain amplitudes. This result is mainly correlated with the decreasing tangent modulus of the structural steel under cyclic plastic loading. In addition, a theoretical approach to evaluate the cyclic rotational capacity of H-shaped beams with different width-to-thickness ratios was also proposed, which compares well with the experimental results.

Comparative Genome Analysis of Psychrobacillus Strain PB01, Isolated from an Iceberg

  • Choi, Jun Young;Kim, Sun Chang;Lee, Pyung Cheon
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.237-243
    • /
    • 2020
  • A novel psychrotolerant Psychrobacillus strain PB01, isolated from an Antarctic iceberg, was comparatively analyzed with five related strains. The complete genome of strain PB01 consists of a single circular chromosome (4.3 Mb) and a plasmid (19 Kb). As potential low-temperature adaptation strategies, strain PB01 has four genes encoding cold-shock proteins, two genes encoding DEAD-box RNA helicases, and eight genes encoding transporters for glycine betaine, which can serve as a cryoprotectant, on the genome. The pan-genome structure of the six Psychrobacillus strains suggests that strain PB01 might have evolved to adapt to extreme environments by changing its genome content to gain higher capacity for DNA repair, translation, and membrane transport. Notably, strain PB01 possesses a complete TCA cycle consisting of eight enzymes as well as three additional Helicobacter pylori-type enzymes: ferredoxin-dependent 2-oxoglutarate synthase, succinyl-CoA/acetoacetyl-CoA transferase, and malate/quinone oxidoreductase. The co-existence of the genes for TCA cycle enzymes has also been identified in the other five Psychrobacillus strains.

Strain-based seismic failure evaluation of coupled dam-reservoir-foundation system

  • Hariri-Ardebili, M.A.;Mirzabozorg, H.;Ghasemi, A.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.85-110
    • /
    • 2013
  • Generally, mass concrete structural behavior is governed by the strain components. However, relevant guidelines in dam engineering evaluate the structural behavior of concrete dams using stress-based criteria. In the present study, strain-based criteria are proposed for the first time in a professional manner and their applicability in seismic failure evaluation of an arch dam are investigated. Numerical model of the dam is provided using NSAD-DRI finite element code and the foundation is modeled to be massed using infinite elements at its far-end boundaries. The coupled dam-reservoir-foundation system is solved in Lagrangian-Eulerian domain using Newmark-${\beta}$ time integration method. Seismic performance of the dam is investigated using parameters such as the demand-capacity ratio, the cumulative inelastic duration and the extension of the overstressed/overstrained areas. Real crack profile of the dam based on the damage mechanics approach is compared with those obtained from stress-based and strain-based approaches. It is found that using stress-based criteria leads to conservative results for arch action while seismic safety evaluation using the proposed strain-based criteria leads to conservative cantilever action.

Tensile Behavior of Highly Ductile Cementitious Composites Using Normal Sand as Fine Aggregate (일반모래를 잔골재로 사용한 고연성 시멘트 복합체의 인장거동)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.178-184
    • /
    • 2017
  • This study was aimed to investigate the tensile behaviors of PE(Polyethylene) fiber-reinforced highly ductile cementitious composites with different combinations of micro silica sand and normal sand(river sand) with maximum particle size of 4.75 mm. Flow test result indicated the increase of flowability with higher replacement ratio of river sand. There was no noticeable difference in the mean compressive strength with different replacement ratio of river sand, but the variation in the compressive strength increased as higher amount of river sand was adopted for the replacement. The difference in the uniaxial tensile strength was negligible, but the tensile strain capacity was significantly influenced by the replacement ratio of river sand. It is thought that increased density of multiple cracks induced improved tensile strain capacity when higher percentage of river sand was adopted for fine aggregate. The deviation in the strain capacity increased as the replacement ratio of river sand was higher, as in the compressive strength. This study presented the feasibility of using normal sand instead of micro silica sand for highly ductile cementitious composites with equivalent or better uniaxial tensile performance, even though it might increase the deviation in the performance.

Examination of Strain Model Constants considering Strain Properties at High Temperature of Ultra-high-strength Concrete (초고강도 콘크리트의 고온 변형 특성을 고려한 변형모델 상수 검토)

  • Hwang, Eui-Chul;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Bo-Kyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.91-97
    • /
    • 2016
  • Evaluation on the test of actual concrete member to confirm the fire resistance of the concrete member using ultra-high strength concrete is required. However, test equipment which has large loading capacity is needed to the actual member experiment. So, many researchers evaluated the fire performance through analytical studies using the material models. This study experimentally evaluated strain properties on ultra-high-strength concrete of 80, 130 and 180 MPa with heating and examined to apply the existing strain model about ultra-high-strength concrete. As a results, constants are drawn by method of least squares applying experimental values and calculated values by the existing strain model, it proposed strain model that can be applied to ultra-high-strength concrete.

Effects of Strain on Performance, and Age at Slaughter and Duration of Post-chilling Aging on Meat Quality Traits of Broiler

  • Abdullah, Abdullah Y.;Muwalla, Marwan M.;Maharmeh, Haitham O.;Matarneh, Sulaiman K.;Ishmais, Majdi A. Abu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1645-1656
    • /
    • 2010
  • This study was conducted to investigate the effects of strain on broiler performance, and age at slaughter and postchilling (PC) aging time on meat quality traits. A total of 500 one-day-old chicks (250 Hubbard classic and 250 Lohman) were reared under commercial conditions. Half of the broiler birds from each strain were slaughtered at 32 days and the other half at 42 days old. At each processing day, 168 carcasses were randomly selected (84 Hubbard and 84 Lohman) and divided into groups of 28 carcasses within each strain, and aged for 0, 4 and 24 h after chilling. Average weekly body weight was comparable between strains. Feed conversion ratio was higher (p<0.05) for the Hubbard strain during the second and third week of age. Initial carcass pH was significantly (p<0.05) affected by age where younger birds (32-d-old) had lower pH values than older (41-d-old) birds. Breast temperature was higher (p<0.001) for Lohman than Hubbard at 0, 2 and 4 h of PC. Younger birds had a lower breast temperature (p<0.001) at all measured times of PC. Thaw loss, cook loss and water holding capacity were not significantly affected by strain, age or aging time. Lohman strain had more tender meat (p<0.05) than Hubbard strain, and tenderness was improved with the increase of broiler age and aging time. Meats from Hubbard were lighter and less red than those from Lohman strain where younger birds had darker color. In conclusion, strain, age at slaughter and PC aging duration are critical to breast meat quality characteristics, and 4 h of aging are required before deboning in order to obtain more tender fillets.

Theoretical and experimental study on shear strength of precast steel reinforced concrete beam

  • Yang, Yong;Xue, Yicong;Yu, Yunlong
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • With the aim to put forward the analytical model for calculating the shear capacity of precast steel reinforced concrete (PSRC) beams, a static test on two full-scale PSRC specimens was conducted under four-point loading, and the failure modes and strain developments of the specimens were critically investigated. Based on the test results, a modified truss-arch model was proposed to analyze the shear mechanisms of PSRC and cast-in-place SRC beams. In the proposed model, the overall shear capacity of PSRC and cast-in-place SRC beams can be obtained by combining the shear capacity of encased steel shape with web concrete determined by modified Nakamura and Narita model and the shear capacity of reinforced concrete part determined by compatible truss-arch model which can consider both the contributions of concrete and stirrups to shear capacity in the truss action as well as the contribution of arch action through compatibility of deformation. Finally, the proposed model is compared with other models from JGJ 138 and AISC 360 using the available SRC beam test data consisting of 75 shear-critical PSRC and SRC beams. The results indicate that the proposed model can improve the accuracy of shear capacity predictions for shear-critical PSRC and cast-in-place SRC beams, and relatively conservative results can be obtained by the models from JGJ 138 and AISC 360.

Experimental seismic behavior of RC special-shaped column to steel beam connections with steel jacket

  • Hao, Jiashu;Ren, Qingying;Li, Xingqian;Zhang, Xizhi;Ding, Yongjun;Zhang, Shaohua
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.101-118
    • /
    • 2022
  • The seismic performance of the reinforced concrete (RC) special-shaped column to steel beam connections with steel jacket used in the RC column to steel beam fabricated frame structures was investigated in this study. The three full-scale specimens were subjected to cyclic loading. The failure mode, ultimate bearing capacity, shear strength capacity, stiffness degradation, energy dissipation capacity, and strain distribution of the specimens were studied by varying the steel jacket thickness parameters. Test results indicate that the RC special-shaped column to steel beam connection with steel jacket is reliable and has excellent seismic performance. The hysteresis curve is full and has excellent energy dissipation capacity. The thickness of the steel jacket is an important parameter affecting the seismic performance of the proposed connections, and the shear strength capacity, ductility, and initial stiffness of the specimens improve with the increase in the thickness of the steel jacket. The calculation formula for the shear strength capacity of RC special-shaped column to steel beam connections with steel jacket is proposed on the basis of the experimental results and numerical simulation analysis. The theoretical values of the formula are in good agreement with the experimental values.