• Title/Summary/Keyword: Straightness error measurement

Search Result 33, Processing Time 0.022 seconds

Development of On-machine Flatness Measurement Method (평면도 기상 측정 방법 개발)

  • 장문주;홍성욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.187-193
    • /
    • 2003
  • This paper presents an on-machine measurement method of flatness error fur surface machining processes. There are two kinds of on-machine measurement methods available to measure flatness errors in workpieces: i.e., surface scanning method and sensor scanning method. However, motion errors are often engaged in both methods. This paper proposes an idea to realize a measurement system of flatness errors and its rigorous application for estimation of motion errors of the positioning system. The measurement system is made by modifying the straightness measurement system, which consists of a laser, a CCD camera and processing system, a sensor head, and some optical units. The sensor head is composed of a retroreflector, a ball and ball socket, a linear motion guide unit and adjustable arms. The experimental .results show that the proposed method is useful to identify flatness errors of machined workpieces as well as motion errors of positioning systems.

공작기계 슬라이더 운동오차측정시스템 개발

  • 황상옥;정무영;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.43-46
    • /
    • 1992
  • Measurement of straightness errors (vertical, horizontal),and angular error (roll, pitch, yaw) have been classified as difficult tasks in the machine tool metrology field. In this paper, computer aided measurement techniques are proposed using quadrant type photo pin diode. In the developed system, three photo diodes are mounted on the positioning table to detect the five degrees of movement error simultaneously. Outputs from the photo diode are analyzed in the computer and are displayed graphically.

A Study on the measurement of Table Deflection using Laser Interferometer and It's Inspection using FEA (레이저 간섭계에 의한 테이블의 처짐측정과 FEA에 의한 이의 검증)

  • 이승수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.204-209
    • /
    • 1998
  • The acceleration of the performance of machine tools influences the development of the semi-conductor and optical technology as the development of NC and measurement technology. We can mention that a traction role of the acceleration for the development like that depends on the development of the measurement technics Stylus instrument method, STM, SEM, Laser interferometer method which are used for measuring the quasi-static error of machine tools. Because the measurement has been done to unload condition without considering of mechanical stiffness in the case of machining center as we measure the quasi-static error of machine tools on general studies, people who works on the spot has many problems on the data value. Therefor we will help working more accurately on the spot by measuring, analyzing, displaying the deflection of the table and support shaft when we load on the table and the support shaft of machining center using laser interferometer. Also we try to settle new conception of the measurement method and more accurate grasp of the deflection tendency by verifing the tendency of the error measured through the comparison of the simulated error using ANSYS, a common finite element analysis program, which is able to measure heat deformation, material deformation, and error resulted form this study.

  • PDF

Evaluation Method of the Multi-axis Errors for Machining Centers (머시닝센터의 다축오차 평가 방법)

  • Hwang, Joo-Ho;Shim, Jong-Youp;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.904-914
    • /
    • 2011
  • The volumetric errors of CNC machining centers are determined by 21 errors, including 3 linear errors, 6 straightness errors, 3 perpendicular errors, 9 angular errors and non-rigid body errors of the machine tool. It is very time consuming and hard to measure all of these errors in which laser interferometer and other parts are used directly. Hence, as many as 21 separate setups and measurements are needed for the linear, straightness, angular and perpendicular errors. In case of the 5-axis machining centers, two more rotary tables are used. It can make 35 error sources of the movement. Therefore, the measured errors of multi movements of the 5-axis tables are very complicated, even if the relative measured errors are measured. This paper describes the methods, those analyze the error sources of the machining centers. Those are based on shifted diagonal measurements method (SDM), R-test and Double ball bar. In case, the angular errors of machine are small enough comparing with others, twelve errors including three linear position errors, six straightness errors and three perpendicular errors can be calculated by using SDM. To confirm the proposed method, SDM was applied to measuring 3 axes of machine tools and compared with directly measurement of each errors. In addition, the methods for measuring relative errors of multi-axis analysis methods using R-test and Double Ball Bar are introduced in this paper.

Analysis of Bending and Rotation Phenomenon of Torsion Bar During Press-fitting Process for EPS Angle Sensors (EPS 각도센서용 토션 바의 압입공정의 휨과 회전현상 분석)

  • H. Lee;S.H. Lee;T.H. Jeon;I.-K. Chung
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.376-383
    • /
    • 2023
  • The torsion bar, which is a steering torque sensor, is mounted between the steering pinion and the input shaft in the IPA(input pinion assembly). Accurate torque measurement is important to improve the sense of operation, and the straightness of the torsion bar can affect torque measurement. In this study, the amount of bending was measured and the exact shape was analyzed regarding the bending phenomenon in the press-fitting process for torsion bars. The effect of alignment error was analyzed through finite element forming analysis. Process data analysis was conducted for the double-end press fit model. If there is an alignment error of about 10% of the serration tooth height, the indentation load is reduced by about 10%. If there is an alignment error, the torsion bar is rotated.

Compensatory cylindricity control of the C.N.C. turing process (컴퓨터 수치제어 선반에서의 진원통도 보상제어)

  • 강민식;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.694-704
    • /
    • 1988
  • A recursive parameter estimation scheme utilizing the variance perturbation method is applied to the workpiece deflection model during CNC turning process, in order to improve the cylindricity of slender workpiece. It features that it is based on exponentially weighted recursive least squares method with post-process measurement of finish surfaces at two locations and it does not require a priori knowledge on the time varying deflection model parameter. The measurements of finish surfaces by using two proximity sensors mounted face to face enable one to identify the straightness, guide-way, run-out eccentricity errors. Preliminary cutting tests show that the straightness error of the finish surface due to workpiece deflection during cutting is most dominant. Identifying the errors and recursive updating the parameter, the off-line control is carried out to compensate the workpiece deflection error, through single pass cutting. Experimental results show that the proposed method is superior to the conventional multi-pass cutting and the direct compensation control in cutting accuracy and efficiency.

Development of large-scale 3D printer with position compensation system (구동부 변위의 보상이 가능한 지능형 대형 3D 프린터 개발)

  • Lee, Woo-Song;Park, Sung-Jin;Park, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.293-301
    • /
    • 2019
  • Based on accurate image processing technology, a system for measuring displacement in ${\mu}m$ for drive error (position error, straightness error, flatness error) at a distance using parallel light and image sensor is developed, and a system for applying this technology development to a large 3D rapid prototyping machine and compensating in real time is developed to dramatically reduce the range of measurement error and enable intelligent 3D production of high quality products.

Development of Tools for Measurement of Inner Shell Deformation of HANARO Reactor

  • Choung, Yun-Hang;Cho, Yeong-Garp;Lee, Jung-Hee;Wu, Jong-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.1353-1354
    • /
    • 2004
  • It was estimated by an analysis method thai the inner shell of HANARO reactor will be deformed due to pressure, loads, creep and growth during reactor operation. To confirm the analysis validity and safe operation of reactor, we developed tools to remotely measure the straightness of the inner shell located 12m below the pool top. The performance and the accuracy of the measurement tools have been verified through tests using a dummy inner shell and steel straight edge. The accuracy of the measurement shows very good results with a maximum error of 0.06mm by steel straight edge. The technical experiences described in this paper will be a good reference not only for the operation and maintenance of HANARO but also for the next performance of the measurement in the future.

  • PDF

Geometric error assessment system for linear guideway using laser-photodiodes (레이저-수광소자를 이용한 선형 이송측의 기하학적 오차측정 시스템)

  • Pahk, H.J.;Chu, C.N.;Hwang, S.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.180-188
    • /
    • 1994
  • Error assessment and evaluation for machine for machine tool slides have been considered as essential tools for improving accuracy. In this paper, a computer aided measurement technique is proposed using photo pin diodes of quadrant type and laser source. In thedeveloped system, three photo diodes are mounted on a sensor mounting table, and the sensored signal is processed by specially designed signal conditioner to give fine resolution with minimum noise. A micro computer inputs the processed signal, and the geometric errors of five degree of freedoms are successfully evaluated. Pitch, roll, yaw, vertical and horizontal straightness errors are thus assessed simultaneously for a machine tool slide. Calibration techniques such as optics calibration, photo diode calibration are proposed and implemented, giving precise calibration for the measurement system. The developed system has been applied to a practical machine tool slide, and has been found as one of efficient and precise technique for machine tool slide.

  • PDF

Bluetooth Smart Ready implementation and RSSI Error Correction using Raspberry (라즈베리파이를 활용한 블루투스 Smart Ready 구현 및 RSSI 오차 보정)

  • Lee, Sung Jin;Moon, Sang Ho
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.280-286
    • /
    • 2022
  • In order to efficiently collect data, it is essential to locate the facilities and analyze the movement data. The current technology for location collection can collect data using a GPS sensor, but GPS has a strong straightness and low diffraction and reflectance, making it difficult for indoor positioning. In the case of indoor positioning, the location is determined by using wireless network technologies such as Wifi, but there is a problem with low accuracy as the error range reaches 20 to 30 m. In this paper, using BLE 4.2 built in Raspberry Pi, we implement Bluetooth Smart Ready. In detail, a beacon was produced for Advertise, and an experiment was conducted to support the serial port for data transmission/reception. In addition, advertise mode and connection mode were implemented at the same time, and a 3-count gradual algorithm and a quadrangular positioning algorithm were implemented for Bluetooth RSSI error correction. As a result of the experiment, the average error was improved compared to the first correction, and the error rate was also improved compared to before the correction, confirming that the error rate for position measurement was significantly improved.