• 제목/요약/키워드: Straight Die

검색결과 39건 처리시간 0.024초

맨드릴을 사용한 굽힘 성형시 헤어핀용 동관의 변형 해석 (Deformation analysis of copper pipe for hair pin under the bending forming using the Mandrel)

  • 김광영;윤두표
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1630-1633
    • /
    • 2003
  • Hair pin bending machine is pipe forming machine consisting of heat exchanger product system. Hair pin produced by these machine is pathway of refrigerant and play a important role improving the performance and productivity of heat exchanger. The core technology of hair pin bending machine is forming the straight pipe into U-type without any defaults. Therefore, this paper study the relation between the pipe bending forming and the shape and position of mandrel using the elastic-plastic finite element analysis and provide a foundation technology for which developing the hair pin bending machine. The results are followed 1. Mandrel located in front of rotating center of bending die minimized the circular shape variation of copper pipe. 2. Diameter change of mandrel hardly effect the pipe shape.

  • PDF

스퍼어 기거의 밀폐단조에 관한 상계해석

  • 최재찬;허관도;김창호;최종용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.52-56
    • /
    • 1992
  • A kinematically admissible velocity field for closed-die forging of spur gear is proposed. The velocity field is divided into three regions of deformation. In the analysis, the involute curve is approximated to be straight line and the upper-bound method is used to calculate energy dissipation rate. A constant frictional factor has been assumed on the contacting surfaces. The effects of root diameter relative pressure is independent of root diameter for the same number of teeth, but increases with the number of teeth on a given root diameter. In the presence of friction, relative forging pressure increases with increasing root diameter at the start of forging, but decreases with increasing root diameter in the processing of forging.

다운동 방식 회전단조기 개발 (Development of Rotary Forging Press with Multi-Rocking Motion)

  • 이윤우;김소겸;최상수;박준수;김윤배;임성주;윤덕재;김승수;박훈재
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 제2회 단조심포지엄 단조기술의 진보
    • /
    • pp.47-54
    • /
    • 1995
  • Rotary forging process has many advantages such as compacting of machine, low price of facilities and good quality of products. The last presented was a technical report about rotary forging press in the 100-ton class, which has the only orbital motion limited to the forming of axisymmetric parts. In this paper, the newly developed rotary forging press is introduced. The maximum capacity of forming load is 280 ton and five locking motion, this is, orbital, straight pivot, spiral and two kinds of clover can be available. This machine consists of transmission, double eccentric bush, rocking shaft, die set and hydraulic unit. Especially, the supports of rocking shaft and double eccentric bush are so crucial that hydrostatic bearings are adopted. Finally, it is expected that the technical know-how obtained in this research can be applied to the manufacturing of the another machine with large capacity.

건물 모델과 디지털 영상간의 자동정합 방법 (Automatic Co-registration of Existing Building Models and Digital Image)

  • 정재욱;손건호
    • 한국측량학회지
    • /
    • 제28권1호
    • /
    • pp.125-132
    • /
    • 2010
  • 최근 다양한 센서의 개발에 따라 동일한 지역에 대한 다양한 데이터들의 취득이 가능하게 되었다. 이러한 다차원 데이터를 이용하여 도시모델, 변화 탐지 등과 같은 다양한 활용분야에 적용하기 위해서 각 데이터들 간의 정합과정이 필수적이다. 본 연구에서는 기 구축된 건물모델을 참조모델로 사용하여 디지털 영상을 자동으로 정합하는 방법을 제시하였다. 두 데이터의 정합을 위해 기 구축 건물모델에서 최적정합건물을 추출 하였으며, 이를 영상에서 추출된 직선정합요소와 비교하여 최적정합건물과 상응하는 점 좌표 쌍을 추출하였다. 또한 추출된 점 좌표 쌍을 이용하여 영상데이터의 외부표정요소를 재계산함으로써 두 데이터간의 정합을 수행하였다. 실험결과는 제안된 방법이 두 데이터의 정합을 효율적으로 수행하는 것을 보여준다.

Failure life estimation of sharp-notched circular tubes with different notch depths under cyclic bending

  • Lee, Kuo-Long;Chang, Kao-Hua;Pan, Wen-Fung
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.387-404
    • /
    • 2016
  • In this paper, the response and failure of sharp-notched 6061-T6 aluminum alloy circular tubes with five different notch depths of 0.4, 0.8, 1.2, 1.6 and 2.0 mm subjected to cyclic bending were experimentally and theoretically investigated. The experimental moment-curvature relationship exhibits an almost steady loop from the beginning of the first cycle. And, the notch depth has almost no influence on its relationship. However, the ovalization-curvature relationship exhibits a symmetrical, increasing, and ratcheting behavior as the number of cycles increases. In addition, a higher notch depth of a tube leads to a more severe unsymmetrical trend of the ovalization-curvature relationship. Focusing on the aforementioned relationships, the finite element software ANSYS was used to continue the related theoretical simulation. Furthermore, the five groups of tubes tested have different notch depths, from which five unparallel straight lines can be observed from the relationship between the controlled curvature and the number of cycles required to produce failure in the log-log scale. Finally, a failure model was proposed to simulate the aforementioned relationship. Through comparison with the experimental data, the proposed model can properly simulate the experimental data.

레이저 프린터용 샤프트 밀폐단조 성형해석 (An Analysis of Closed Die Forging of Laser Printer Shaft by Finite Element Method)

  • 차성훈;신명수;김종호;나승우;김종봉
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.150-155
    • /
    • 2009
  • A shaft for laser printers has to be produced with high dimensional accuracy of a few micrometers. Most companies produce the shaft, therefore, by machining. These days, forging process is tried to be employed in manufacturing the shaft for productivity. In this study, the dimensional inaccuracy of straightness is studied and the underfill is not focused because the shaft shape is simple and the load capacity of press is sufficient. The straightness and concentricity of the shaft is important for the operation of a laser printer. Many design parameters such as preform shapes, tooling dimensions, forging load, and billet geometries may affect on the dimensional accuracy. In the forging process of shafts, a billet which is cut from wires is used. The billet, therefore, may be a little bit curved but not always straight. The elastic recovery is considered to cause the dimensional inaccuracy. Therefore, the effect of the forging load on the elastic recovery and straightness is investigated through the finite element analyses using DEFORM-3D and ABAQUS.

열간압연중 압연하중 및 압연동력 예측 모델 (Evaluzation of Model equation Predicting Roll Force and Roll Power during Hot Rolling)

  • 곽우진;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.308-312
    • /
    • 1999
  • Developed the model equations which calculate roll force, roll power during hot rolling in real time. The variables which mainly effect on the roll force, roll power are shape factor, reduction, roll diameter, roll velocity, strip inlet temperature, carbon content of strip and strip-roll contact friction coefficient. Among these variables roll diameter, roll velocity, inlet temperature, carbon content and friction coefficient can be excluded in interpolated model equation by introducing equation of die force(F'), power(p') of the frictionless uniform plane strain compression which can be calculated without iteration. At the case of coulomb friction coefficient of 0.3, we evaluated coefficient of polynomial equations of {{{{ { F} over {F' } }}}}, {{{{ { Pf} over {Pd }, { Pd} over {P' } }}}} from the result of finite element analysis using interpolation. It was found that the change of values of {{{{ { F} over {F' }, { P} over {P' } }}}} with the friction coefficient tend to straight line which slope depend only on shape factor. With these properties, developed model equations could be extended to other values of coulomb friction coefficient. To verify developed roll force, roll power model equation we compared the results from these model equation with the results from these model equation with the results from finite element analysis in factory process condition.

  • PDF

유한요소해석에 의한 헤밍 공정 변수연구 (A Parametric Study of the Hemming Process by Finite Element Analysis)

  • 김형종;최원목;임재규;박춘달;이우홍;김헌영
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.149-157
    • /
    • 2004
  • Implicit finite element analysis of the flat surface-straight edge hemming process is performed by using a commercial code ABAQUS/Standard. Methods of finite element modeling for springback simulation and contact pair definition are discussed. An optimal mesh system is chosen through the error analysis that is based on the smoothing of discontinuity in the state variables. This study has focused on the investigation of the influence of process parameters in flanging, pre-hemming and main hemming on final hem quality, which can be defined by turn-down, warp and roll-in. The parameters adopted in this parametric study are flange length, flange angle, flanging die corner radius, face angle and insertion angle of pre-hemming punch, and over-stroke of pre-hemming and main hemming punches.

Robotized Filament Winding of Full Section Parts: Comparison Between Two Winding Trajectory Planning Rules

  • Sorrentino, L.;Polini, W.;Carrino, L.;Anamateros, E.;Paris, G.
    • Advanced Composite Materials
    • /
    • 제17권1호
    • /
    • pp.1-23
    • /
    • 2008
  • Robotized filament winding technology involves a robot that winds a roving impregnated by resin on a die along the directions of stresses to which the work-piece is submitted in applications. The robot moves a deposition head along a winding trajectory in order to deposit roving. The trajectory planning is a very critical aspect of robotized filament winding technology, since it is responsible for both the tension constancy and the winding time. The present work shows two original rules to plan the winding trajectory of structural parts, whose shape is obtained by sweeping a full section around a 3D curve that must be closed and not crossing in order to assure a continuous winding. The first rule plans the winding trajectory by approximating the part 3D shape with straight lines; it is called the discretized rule. The second rule defines the winding trajectory simply by offsetting a 3D curve that reproduces the part 3D shape, of a defined distance; it is called the offset rule. The two rules have been compared in terms of roving tension and winding time. The present work shows how the offset rule enables achievement of both the required aims: to manufacture parts of high structural performances by keeping the tension on the roving near to the nominal value and to markedly decrease the winding time. This is the first step towards the optimization of the robotized filament winding technology.