• 제목/요약/키워드: Stover

검색결과 97건 처리시간 0.031초

Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

  • Li, Dongxia;Ni, Kuikui;Pang, Huili;Wang, Yanping;Cai, Yimin;Jin, Qingsheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권5호
    • /
    • pp.620-631
    • /
    • 2015
  • A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC $43971^T$, Micrococcus luteus ATCC $4698^T$ and Escherichia coli ATCC $11775^T$ were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at $100^{\circ}C$), but the antimicrobial activity was eliminated after treatment at $121^{\circ}C$ for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory.

Enhancing Enzymatic Saccharification of Corn Stover by Aqueous Ammonia Soaking Pretreatment (옥수수 줄기의 암모니아수 침지 전처리에 의한 효소 당화 향상)

  • Shin, Soo-Jeong;Yu, Ju-Hyun;Cho, Nam-Seok;Han, Sim-Hee;Kim, Mun-Sung;Park, Jong-Moon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권4호
    • /
    • pp.381-387
    • /
    • 2009
  • Enhancing enzymatic saccharification of corn stover by aqueous ammonia soaking pretreatment was investigated on chemical compositional changes and enzymatic hydrolysis characteristics. At three different levels of aqueous ammonia soaking temperature and time ($140^{\circ}C$-1 h, $90^{\circ}C$-16 h and $50^{\circ}C$-6 days), higher temperature and shorter treatment time led to more xylan and lignin removal based on overall composition analysis and carbohydrate compositional analysis. More xylan and lignin removal in higher temperature treatment led to higher enzymatic saccharification of cellulose and xylan to monosaccharide by commercial cellulase mixtures (Celluclast 1.5L and Novozym 342 from Novozyme, Denmark).

Corn stover usage and farm profit for sustainable dairy farming in China

  • He, Yuan;Cone, John W.;Hendriks, Wouter H.;Dijkstra, Jan
    • Animal Bioscience
    • /
    • 제34권1호
    • /
    • pp.36-47
    • /
    • 2021
  • Objective: This study determined the optimal ratio of whole plant corn silage (WPCS) to corn stover (stems+leaves) silage (CSS) (WPCS:CSS) to reach the greatest profit of dairy farmers and evaluated its consequences with corn available for other purposes, enteric methane production and milk nitrogen efficiency (MNE) at varying milk production levels. Methods: An optimization model was developed. Chemical composition, rumen undegradable protein and metabolizable energy (ME) of WPCS and CSS from 4 cultivars were determined to provide data for the model. Results: At production levels of 0, 10, 20, and 30 kg milk/cow/d, the WPCS:CSS to maximize the profit of dairy farmers was 16:84, 22:78, 44:56, and 88:12, respectively, and the land area needed to grow corn plants was 4.5, 31.4, 33.4, and 30.3 ha, respectively. The amount of corn available (ton DM/ha/yr) for other purposes saved from this land area decreased with higher producing cows. However, compared with high producing cows (30 kg/d milk), more low producing cows (10 kg/d milk) and more land area to grow corn and soybeans was needed to produce the same total amount of milk. Extra land is available to grow corn for a higher milk production, leading to more corn available for other purposes. Increasing ME content of CSS decreased the land area needed, increased the profit of dairy farms and provided more corn available for other purposes. At the optimal WPCS:CSS, MNE and enteric methane production was greater, but methane production per kg milk was lower, for high producing cows. Conclusion: The WPCS:CSS to maximize the profit for dairy farms increases with decreased milk production levels. At a fixed total amount of milk being produced, high producing cows increase corn available for other purposes. At the optimal WPCS:CSS, methane emission intensity is smaller and MNE is greater for high producing cows.

Fermentation characteristics and microbial community composition of wet brewer's grains and corn stover mixed silage prepared with cellulase and lactic acid bacteria supplementation

  • Guoqiang Zhao;Hao Wu;Yangyuan Li;Li Li;Jiajun He;Xinjian Yang;Xiangxue Xie
    • Animal Bioscience
    • /
    • 제37권1호
    • /
    • pp.84-94
    • /
    • 2024
  • Objective: The objective of this study was to investigate how cellulase or/and lactic acid bacteria (LAB) affected the fermentation characteristic and microbial community in wet brewer's grains (WBG) and corn stover (CS) mixed silage. Methods: The WBG was mixed thoroughly with the CS at 7:3 (w/w). Four treatment groups were studied: i) CON, no additives; ii) CEL, added cellulase (120 U/g fresh matter [FM]), iii) LAB, added LAB (2×106 cfu/g FM), and iv) CLA, added cellulase (120 U/g FM) and LAB (2×106 cfu/g FM). Results: All additive-treated groups showed higher fermentation quality over the 30 d ensiling period. As these groups exhibited higher (p<0.05) LAB counts and lactic acid (LA) content, along with lower pH value and ammonia-nitrogen (NH3-N) content than the control. Specifically, cellulase-treated groups (CEL and CLA) showed lower (p<0.05) neutral detergent fiber and acid detergent fiber contents than other groups. All additives increased the abundance of beneficial bacteria (Firmicutes, Lactiplantibacillus, and Limosilactobacillus) while they decreased abundance of Proteobacteria and microbial diversity as well. Conclusion: The combined application of cellulase and LAB could effectively improve the fermentation quality and microbial community of the WBG and CS mixed silage.

Effect of the Seeding and Harvesting Dates on the Growth Characteristics, Dry Matter Yield and Quality of Corn for Silage in Alpine Areas (고랭지에서 파종시기 및 수확시기가 사일리지용 옥수수의 생육특성, 건물수량 및 사료가치에 미치는 영향)

  • 이종경;박형수;김영근;정종원;나기준;김문철;이성철;육완방
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • 제24권2호
    • /
    • pp.115-122
    • /
    • 2004
  • This study was conducted to investigate the effect of the seeding and harvesting dates on the growth characteristics, dry matter yield and quality of com for silage in alpine area(altitude 800m a.s.l.) of National Livestock Research Institute from 2001 to 2002. The experiment was arranged in a split plot design with three replications. Main plots consisted of three seeding dates, 10 May, 20 May and 30 May. Sub plots consisted of harvesting dates, 15 September, 25 September and 5 October. Tassel height of com was decreased with seeding dates, 30 May, 10 May and 20 May in order, and harvesting date of 5 October was apt to be high. Ear height of com was decreased with seeding dates, 20 May, 30 May, and 10 May in order, and harvesting date of 15 September was the lowest of all treatments. Ear rate of com was decreased with late seeding dates, and it was the highest with harvesting date of 5 October. Dry matter yield was decreased with late seeding dates(P<0.05), and it was increased with late harvesting regardless of seeding dates(P<0.05). Crude protein content of com stover was increased with late seeding dates, and that of com ear was the highest with seeding date of 20 May. And crude protein contents of com stover and ear were the highest with harvesting date of 15 September. NDF contents of com stover and ear were the highest with seeding date of 10 May and 20 May, respectively, and NDF content of com stover was the highest with seeding date of 10 May and there was no difference among treatments in NDF content of ear. ADF content of com stover was 42.1 to 42.6% regardless of seeding dates, and that of com ear was the highest with seeding date of 30 May. ADF content of com stover and ear was increased with early harvesting date excepting for harvesting date of 20 May. These results indicate that 20 May and 25 September would be the optimum seeding date and harvesting date, respectively, for dry matter yield and nutritive value of silage com in alpine area.

Use of In vitro Gas Production Technique to Investigate Interactions between Rice Straw, Wheat Straw, Maize Stover and Alfalfa or Clover

  • Tang, S.X.;Tayo, G.O.;Tan, Z.L.;Sun, Z.H.;Wang, M.;Ren, G.P.;Han, X.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권9호
    • /
    • pp.1278-1285
    • /
    • 2008
  • Measurement of gas produced during in vitro fermentation was used to investigate the fermentation characteristics and interactions of rice straw, wheat straw or maize stover mixed with alfalfa or clover at proportions of 100:0, 75:25, 50:50, 25:75 and 0:100, respectively. Cumulative gas production was recorded at 2, 4, 8, 12, 16, 24 and 48 h of incubation, and the Gompertz function was used to describe the kinetics of gas production. In vitro dry matter and organic matter disappearances (IVDMD and IVOMD) were determined after 48 h incubation. The rate of gas production of clover was higher (p<0.05) than that of rice straw, wheat straw, maize stover and alfalfa when straws and hays were incubated separately. Increasing the proportion of alfalfa in the straw-alfalfa mixtures increased (p<0.05) the rates, but not the maximum volume of gas production. However, both rate and the maximum volume of gas production were increased (p<0.01) as the proportions of clover increased in the straw-clover mixtures. The cumulative gas production at 48 h, IVDMD and IVOMD showed no consistent interaction effects between different mixtures of cereal straws and hays. The extent of interactive effects was affected by the types of cereal straw, legume hay and their proportions in the mixture. The appropriate combination for the mixture of rice straw or maize stover with leguminous hays was 75:25 and 25:75, respectively. The better combination occurred at a proportion of 50:50 for the mixture of wheat straw and alfalfa. We conclude that the suitable proportion of low-quality straw and high quality legume hay combination should be considered in the ration formulation system of ruminants according to the extent of positive interactive effects.

Effect of Planting Date on Forage Yield and Quality of corn Four Maturity Groups (숙기가 다른 사일리지용 옥수수의 파종기가 사초의 수량과 사료가치에 미치는 영향)

  • 김동암;이광녕;신동은;김종덕;한건준
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • 제16권4호
    • /
    • pp.327-337
    • /
    • 1996
  • A field experiment was conducted at SNU Experimental Livestock Farm, Suweon in 1995 to determine effect of planting date on forage performance of wm hybrids of four different maturity groups. A split-plot design replicated three times was used, with com hybrids representing four maturity groups (115, 118, 121 and 125 days) being the main plots and planting dates (3124, 415, 415, 425, 515 and 5/15) the sub-plots. 1. Days to emergence and percent emergence from the March 24 planting were, on the average, 36 days and 58%, respectively, but those from the April 5 to May 15 planting averaged 12 days and 92%, respectively. 2. Plant and ear heights increased gradually as the dates of planting were delayed except the May 15 planting, however, percent ear was decreased as the dates of planting were delayed. There was a trend for the mean lodging percentage of the hybrids to be higher as the planting date was delayed. 3. The 115-and 118-day mediumearly maturing hybrids harvested on August 18 produced silages with a dry matter content between 27 and 30% at all planting dates except the May 15 planting, while the 121-and 125-day medium-late maturing hybrids produced silages with a dry matter wntent less than 27% regardless of any planting dates. 4. There were no significant differences in mean dry matter yield among the hybrids, but significant mean TDN yield differences were found. The 115-, 118- and 125-day hybrids had significantly higher mean TDN yield than the 121-day hybrid. There were significant differences in mean dry matter and TDN yields among the planting dates. The mean dry matter and TDN yields from the April 5, 15 and 25 plantings were significantly higher than those of other plantings, however, there were no significant differences in mean TDN yield among the April 5, April 15 and April 25 plantings. No significant planting date $\times$ maturity interactions were found for both the dry matter and TDN yields. 5. Mean stover NDF and ADF contents of the 115- and 118day hybrids were higher than those of the 121- and 125-day hybrids, but the reverse was true for mean stover IVDMD and RFV. Mean stover NDF an ADF contents increased with earlier plantings, but mean stover IVDMD and RFV increased when planting was delayed. Results of this experiment indicate that for corn planting in central and northern areas of Korea, early to mid-April may be the right time with the 115-to 118-day maturity hybrids when silage making before August 20 is taken into consideration.

  • PDF

Bioconversion Strategy in Conversion of Lignocellulosic Biomass upon Various Pretreatment Methods using Sulfuric Acid and Aqueous Ammonia (황산과 암모니아를 이용한 목질계 바이오매스의 전처리 공정에 따른 당화 및 발효공정 전략)

  • Cayetano, Roent Dune;Kim, Tae Hyun;Um, Byung-Hwan
    • Korean Chemical Engineering Research
    • /
    • 제52권1호
    • /
    • pp.45-51
    • /
    • 2014
  • This is to study the effects of various pretreatment methods of agricultural residue, corn stover, and to compare the feature and pros and cons of each method including dilute sulfuric acid (DSA), soaking in aqueous ammonia (SAA), and ammonia recycle percolation (ARP). In order to convert corn stover to ethanol, various pretreatments followed by simultaneous saccharification and co-fermentation (SSCF) were tested and evaluated in terms of ethanol yield. With 3%, w/w of glucan loading using ARP-, DSA-, and SAA-treated solids, SSCFs using recombinant E. coli strain (ATCC$^{(R)}$ 55124) with commercial enzymes (15 FPU of Spezyme CP/g-glucan and 30 CBU/g-glucan enzyme loading) were tested. In the SSCF tests, 87, 90, and 78% of theoretical maximum ethanol yield were observed using ARP-, DSA-, and SAA-treated solids, respectively, which were 69, 58, and 74% on the basis of total carbohydrates (glucan + xylan) in the untreated corn stover. Ethanol yield of SAA-treated solid was higher than those of ARP- and DSA-treated solids. In addition, SSCF test using treated solids plus pretreated hydrolysate indicated that the DSA-treated hydrolysate showed the strongest inhibition effect on the KO11 strain, whereas the ARP-treated hydrolysate was found to have the second strongest inhibition effect. Bioconversion scheme using SAA pretreatment and SSCF can make the downstream process simple, which is suggested to produce ethanol economically because utilization of hemicellulose in the hydrolysate is not necessary.

Pretreatment of Corn Stover for Improved Enzymatic Saccharification using Ammonia Circulation Reactor (ACR) (순환식 암모니아 반응기(Ammonia Circulation Reactor (ACR))를 이용한 옥수수대의 전처리 및 효소 당화율 향상)

  • Shrestha, Rubee Koju;Hur, Onsook;Kim, Tae Hyun
    • Korean Chemical Engineering Research
    • /
    • 제51권3호
    • /
    • pp.335-341
    • /
    • 2013
  • Ammonia circulation reactor (ACR) was devised for the effective pretreatment of corn stover. This method is designed to circulate aqueous ammonia continuously so that it can reduce the chemical and water consumption during pretreatment. In this study, ammonia pretreatment with various reaction conditions such as reaction time (4~12 hour), temperature ($60{\sim}80^{\circ}C$), and solid:liquid ratio (1:3~1:8) was tested. Chemical compositions including solid remaining after reaction, lignin and carbohydrates were analyzed and enzymatic digestibility was also measured. It was observed that as reaction conditions become more severe, lignin removal was significantly affected, which was in the range of 47.6~70.6%. On the other hands, glucan and xylan losses were not substantial as compared to that of lignin. At all tested conditions, the glucan loss was not changed substantially, which was between 4.7% and 15.2%, while the xylan loss varied, which was between 7.4% and 25.8%. With (15 FPU-GC220+30 CBU)/g-glucan of enzyme loading, corn stover treated using ammonia circulation reactor for 8~12 hours resulted in 90.1~94.5% of 72-h glucan digestibility, which was higher than 92.7% of $Avicel^{(R)}$-101. In addition, initial hydrolysis rate (at 24 hour) of this treated corn stover was 73.0~79.4%, which was shown to be much faster than 69.5% of $Avicel^{(R)}$-101. As reaction time increased, more lignin removal and it was assumed that the enhanced enzymatic digestibility of treated biomass was attributed to the lignin removal.