• Title/Summary/Keyword: Story Shear

Search Result 536, Processing Time 0.024 seconds

Seismic protection of smart base-isolated structures using negative stiffness device and regulated damping

  • Bahar, Arash;Salavati-Khoshghalb, Mohsen;Ejabati, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.359-371
    • /
    • 2018
  • Strong seismic events commonly cause large drift and deformation, and functionality failures in the superstructures. One way to prevent functionality failures is to design structures which are ductile and flexible through yielding when subjected to strong ground excitations. By developing forces that assist motion as "negative stiffness forces", yielding can be achieved. In this paper, we adopt the weakening and damping method to achieve a new approach to reduce all of the structural responses by further adjusting damping phase. A semi-active control system is adopted to perform the experiments. In this adaptation, negative stiffness forces through certain devices are used in weakening phase to reduce structural strength. Magneto-rheological (MR) dampers are then added to preserve stability of the structure. To adjust the voltage in MR dampers, an inverse model is employed in the control system to command MR dampers and generate the desired control forces, where a velocity control algorithm produces initial required control force. An extensive numerical study is conducted to evaluate proposed methodology by using the smart base-isolated benchmark building. Totally, nine control systems are examined to study proposed strategy. Based on the numerical results of seven earthquakes, the use of proposed strategy not only reduces base displacements, base accelerations and base shear but also leads to reduction of accelerations and inter story drifts of the superstructure. Numerical results shows that the usage of inverse model produces the desired regulated damping, thus improving the stability of the structure.

Seismic pounding effects on adjacent buildings in series with different alignment configurations

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Abdel Shafy, Aly G.A.;Abbas, Yousef A.;Omar, Mohamed;Abdel Latif, Mohamed M.S.;Mahmoud, Sayed
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.289-308
    • /
    • 2018
  • Numerous urban seismic vulnerability studies have recognized pounding as one of the main risks due to the restricted separation distance between neighboring structures. The pounding effects on the adjacent buildings could extend from slight non-structural to serious structural damage that could even head to a total collapse of buildings. Therefore, an assessment of the seismic pounding hazard to the adjacent buildings is superficial in future building code calibrations. Thus, this study targets are to draw useful recommendations and set up guidelines for potential pounding damage evaluation for code calibration through a numerical simulation approach for the evaluation of the pounding risks on adjacent buildings. A numerical simulation is formulated to estimate the seismic pounding effects on the seismic response demands of adjacent buildings for different design parameters that include: number of stories, separation distances; alignment configurations, and then compared with nominal model without pounding. Based on the obtained results, it has been concluded that the severity of the pounding effects depends on the dynamic characteristics of the adjacent buildings and the input excitation characteristics, and whether the building is exposed to one or two-sided impacts. Seismic pounding among adjacent buildings produces greater acceleration and shear force response demands at different story levels compared to the no pounding case response demands.

Structural Capacity of Steel Plate Walls According to Various Infill Plate Details (다양한 웨브강판 상세에 따른 골조강판벽의 구조성능)

  • Park, Hong Gun;Choi, In Rak;Jeon, Sang Woo;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.67-78
    • /
    • 2007
  • In this study, we performed an investigation on the variations in the structural capacity of steel plate walls with various infill plate details. Five three-story plate walls with thin web plates were tested. Parameters for the test specimens were the connection details between the moment frame and infill plates, such as weld and bolt connections, the location and length of weld connection, and coupling wall. Regardless of the details of infilled steel plate, the steel plate wall specimens showed excellent initial stiffness, strength, and energy dissipation capacity. However, the wall with bolt-connected infill plates showed slightly low deformation capacity. This result showed that for workability and cost efficiency,various wall details can be used in practice without causing a significant decrease in the structural capacity of steel plate walls. A method for making projections on strength and energy dissipation capacity of steel plate wall specimens with various details was developed.

Seismic Isolation Effects Due to the Difference Between the Center of Mass of the Building and the Center of Stiffness of Isolation Layer (건물의 질량중심과 면진층의 강성중심 차이에 따른 면진효과)

  • Hur, Moo-Won;Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.107-115
    • /
    • 2014
  • In this study, we examined the seismic isolation effects due to the difference between the center of mass of the building and the center of stiffness of isolation layer. Because the base isolation technique is a technique that is highly dependent on the performance of seismic isolation devices installed on the seismic isolation layer, we have to examine the horizontal stiffness of seismic isolation devices after making them. If difference between the design stiffness and the actual stiffness of the seismic isolation device occurred, a big problem may be generated in the upper members on the seismic isolation layer. The analytical results show that the more eccentricity increases, the more maximum response acceleration, story shear and the member forces of the upper part of the structure increases, and the damage is expected to be in excess. Therefore, it is recommended that if possible, isolation devices have to be designed to coincide the center of mass of the building with the center of stiffness of isolation layer. If not after making isolation devices, they need to be relocated to prevent the eccentricity.

Mitigating Seismic Response of the RC Framed Apartment Building Structures Using Stair-Installation Kagome Damping System (계단 설치형 카고메 감쇠시스템을 활용한 철근콘크리트 라멘조 공동주택의 지진응답 개선)

  • Hur, Moo-Won;Chun, Young-Soo;Lee, Sang-Hyun;Hwang, Jae-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.23-30
    • /
    • 2018
  • Recently, there are highly interests on structural damping to improve resistance of seismic and wind. It has been frequently used hysteresis damping devices made of steel because of economic efficiency, construction, and maintenance. This paper presents the effective reduction of seismic response by using Kagome damping system(SKDS) in rahmen system apartment building. The proposed system is designed to be activated by the relative displacement between the building and the stairs. It is performed nonlinear dynamic analysis to review the effects of earthquake response reduction for the 20-stories rahmen framed apartment building. In the analysis of the SKDS system, the reduction of maximum response displacement, maximum response acceleration and layer shear force are compared with the seismic design, and the result show that allowable story displacement is satisfied with Korean Building Code (KBC 2016).

Development of Drift Design Method for High-rise Buildings Considering Characteristics of Member Forces (부재력 특성을 고려한 설계변수를 사용한 고층건물 변위조절설계법 개발)

  • 서지현;박효선
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.215-222
    • /
    • 2004
  • Drift design methods using resizing techniques have been presented as a practical drift control methods of high-rise buildings. Most drift design methods using the resizing techniques have adopted the cross-sectional area as the design variables for all structural members in a structure. However, the cross-sectional area is not always governing sectional property for the structural members, but the governing sectional property of each member is dependent on the characteristics of member forces. In this paper, a drift design method using the sectional property related to the governing displacement participation factor as the design variable of each member is presented and applied to the drift design of 20-story steel frame-shear wall system. It can be noted from example test that drift design method considering member characteristics shows similar or somewhat better results in the view point of structural weights and the accuracy of displacement estimation.

Progressive Collapse Resisting Capacity of Building Structures with Infill Steel Panels (강판벽이 설치된 건물의 연쇄붕괴 저항성능)

  • Lee, Ha-Na;Kwon, Kwang-Ho;Kim, Jin-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • In this study the progressive collapse behavior of a moment frame with infill steel panels is evaluated using nonlinear static pushdown analysis. The analysis model is a two story two span structure designed only for gravity load, and the load-displacement relationship is obtained with the center column removed. To obtain local stress and strain as well as the global structural behavior, finite element analysis is conducted using ABACUS. Through the analysis the effect of the span length and the thickness of the steel plate on the progressive collapse behavior of the structure is investigated, and the effect of the dividing the infill panel using stud columns is also studied. According to the analysis results, the thickness of the panels required to prevent progressive collapse increases as the span length increases, and as the number of panel division increases the progressive collapse resisting capacity increases slightly but the effect is not significant. It is also observed that when the infill panel is installed in only a part of the span the progressive collapse resisting capacity is somewhat increased.

Seismic Performance Evaluation of Staggered Truss System by the Shape of Truss (트러스 형태에 따른 스태거드트러스 골조시스템의 내진성능 평가)

  • Hong, Yoon-Soo;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.397-404
    • /
    • 2017
  • The purpose of this study is to evaluate the seismic performance of Staggered Truss Frame(STF) system while changing a shape of truss. The model of this project is a office building of ten floors with Pratt, Howe, Warren, K and Vierendeel truss system applied on each model. Next step is to select the section of elements which satisfy the highest demand capacity ratio by structure design considering gravity load, earthquake load and wind load and then calculate natural period, base shear and story drifts. On the basis of these values, Capacity Spectrum Method(CSM) shows the plastic behavior of STF system such as performance point of Design Earthquake(DE) and Maximum Considered Earthquake(MCE), yield state, plastic hinge etc. to be compared with other truss systems. As a result, Vierendeel STF system especially was found to have the highest strength and stiffness to the corresponding earthquake and all the models for each truss shape fulfilled the target performance level.

Vision-Based Displacement Measurement System Operable at Arbitrary Positions (임의의 위치에서 사용 가능한 영상 기반 변위 계측 시스템)

  • Lee, Jun-Hwa;Cho, Soo-Jin;Sim, Sung-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.123-130
    • /
    • 2014
  • In this study, a vision-based displacement measurement system is developed to accurately measure the displacement of a structure with locating the camera at arbitrary position. The previous vision-based system brings error when the optical axis of a camera has an angle with the measured structure, which limits the applicability at large structures. The developed system measures displacement by processing the images of a target plate that is attached on the measured position of a structure. To measure displacement regardless of the angle between the optical axis of the camera and the target plate, planar homography is employed to match two planes in image and world coordinate systems. To validate the performance of the present system, a laboratory test is carried out using a small 2-story shear building model. The result shows that the present system measures accurate displacement of the structure even with a camera significantly angled with the target plate.

Optimal Design of Friction Dampers based on the Story Shear Force Distribution of a Building Structure (경주지역에서 발생한 3개 지진의 지진원 및 지진파전파 매질특성에 관한 연구)

  • Jung, Je-Won;Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.33-39
    • /
    • 2006
  • Parameters including the seismic sources and the elastic wave propagation characteristics were analysed using the observed ground motions from 3 Kyoungju region earthquakes. The Levenberg-Marquardt algorithm was applied to invert all the variables non-linearly and simultaneously with S wave energy In frequency domain. Average stress drop of 3 events and local attenuation parameter ${\kappa}$ were estimated to about 48-bar and 0.0312 respectively. Regional attenuation parameter, Qo and ${\eta}$, were also estimated to be about 417 and 0.83. ${\kappa}$ values are much higher than that of EUS, even though smaller than that of WUS. All these values resultant from this study show that there are differences in some parameters of other studios due to differences in the governing equation. of acceleration motions