• Title/Summary/Keyword: Stormwater Drainage

Search Result 44, Processing Time 0.019 seconds

A Study for the Computer Simulation on the Flood Prevention Function of the Extensive Green Roof in Connection with RCP 8.5 Scenarios (RCP 8.5 시나리오와 연동한 저관리형 옥상녹화시스템의 수해방재 성능에 대한 전산모의 연구)

  • Kim, Tae Han;Park, Sang Yeon;Park, Eun Hee;Jang, Seung Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • Recently, major cities in Korea are suffering from frequent urban flooding caused by heavy rainfall. Such urban flooding mainly occurs due to the limited design capacity of the current drainage network, which increases the vulnerability of the cities to cope with intense precipitation events brought about by climate change. In other words, it can be interpreted that runoff exceeding the design capacity of the drainage network and increased impervious surfaces in the urban cities can overburden the current drainage system and cause floods. The study presents the green roof as a sustainable solution for this issue, and suggests the pre-design using the LID controls model in SWMM to establish more specific flood prevention system. In order to conduct the computer simulation in connection with Korean climate, the study used the measured precipitation data from Cheonan Station of Korea Meteorological Administration (KMA) and the forecasted precipitation data from RCP 8.5 scenario. As a result, Extensive Green Roof System reduced the peak runoff by 53.5% with the past storm events and by 54.9% with the future storm events. The runoff efficiency was decreased to 4% and 7%. This results can be understood that Extensive Green Roof System works effectively in reducing the peak runoff instead of reducing the total stormwater runoff.

Estimation of Storage Capacity for CSOs Storage System in Urban Area (도시유역 CSOs 처리를 위한 저류형시스템 설계용량 산정)

  • Jo, Deok Jun;Lee, Jung Ho;Kim, Myoung Su;Kim, Joong Hoon;Park, Moo Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.490-497
    • /
    • 2007
  • A Combined sewer overflows (CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available (which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a continuous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban drainage system used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range $3{\times}DWF$ (dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a decision of storage volume for CSOs reduction and water quality protection.

Pollutants Characteristics of Surface Runoff from the Industrial Complex (산업공단에서의 지표유출수 오염물질 특성)

  • Kim, Youn-Kwon;Shin, Eung-Bai;Lee, Doo-Jin;Pae, Yo-sop;Yoon, Hyun-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.689-698
    • /
    • 2000
  • The quality of stormwater runoff has been a major concern in water quality preservation. Characteristics of heavy metals and conventional pollutants in surface runoff from industrial complex, during the first flush, were not completely understood, Generally, separated sewer system is known for their water quality with untreated wastewater during storm events. In this study, the quality and characteristics of surface runoff from the industrial complex were investigated. The target area in the industrial complex catchment was divided 4 sub-areas, and the quality of stormwater runoff from the selected drainage areas was investigated using a grab sampling method. The petro-chemical industry and the junkyard discharged relatively high concentration of conventional pollutants, such as BOD, COD, SS, and TN through the first flush runoff samples. On the other hand, a higher level of heavy metals was found in the first flush runoff from the metal-mechanical industry and the scrap storage yard. For metals, Fe, Zn and Cu were the most prevalent species found in the first flush runoff from all sites for every surface runoff samples, while Pb, As, Cd, Cr and Ni were the least prevalent species and Hg was not found in any sample at any site. These results suggest that the nature of pollutants in surface runoff from the industrial complex was related to the type of industry, and the concentration of pollutants was determinated by the degree of exposed pollutant sources and the characteristic of rainfall events at the sites.

  • PDF

Analysis of the Discharge Characteristics of Non-point Pollutants from the Interception Facilities according to Rainfall Conditions (강우조건에 따른 차집시설에서의 비점오염물질 유출특성분석)

  • Lin, Zi-Yu;Eun, Beomjin;Heo, Jeong Sook;Choi, I Song;Oh, Jong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • This study was carried out to understand the water quality characteristics of the initial stormwater runoff and the origin of soluble pollutants according to various rainfall conditions from a non-point source reducing facility. The water sample from this study was collected among 10 collection facilities in the G-drainage area. Specifically, five of the collection points including #1, #5, #8, #9, and #10 were reported with unknown water inflow even during non-rain conditions. The leakage characteristics of non-point pollutants from the collection facilities were then able to identify accordingly. The water quality characteristics of the stormwater runoff from the collection facilities were strongly affected by the amounts of rainfalls. The average concentrations of EC, BOD, TOC, and TN during non-rain were found to be higher than their concentrations during rain; on the other hand, the average concentrations of DO were found to be lower than its concentrations during rain. In addition, the distribution of organic components existing in the effluent of collection facilities were identified based on the dissolved organic matter analysis. In summary, the stormwater runoff was highly affected by pollutants flowing from the surrounding environment, and the amounts of hard-to-decompose humic substances were greatly increased in the collection facilities due to rain.

Storm-Water CSOs for Reservoir System Designs in Urban Area (도시유역 저류형 시스템 설계를 위한 CSOs 산정)

  • Jo, Deok-Jun;Kim, Myoung-Su;Lee, Jung-Ho;Park, Moo-Jong;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1199-1203
    • /
    • 2005
  • Combined sewer overflows(CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available(which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a contiunous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban dranage system used analytical Probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics or the subject area using analytical Probabilistic model. Runoff characteristics manifasted the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range 3xDWF(dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a dicision of storage volume for CSOs reduction and water quality protection.

  • PDF

A Study on the Hydrologic Design of Detention Storage Ponds in Urbanized Area (도시유역에서 지체저류시설의 수문학적 설계에 관한 연구)

  • 이정식;이재준
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.159-173
    • /
    • 1995
  • This study is to develop the suitable hydrologic models for determination of the size and location of detention storage facilities to restrain stormwater runoff in urban areas. Fictitious areas of two levels are considered to seize the hydrologic response characteristics. A one-square-kilometer area is selected for the catchment level, and a 10-square-kilometer area consisting of 10 catchments is adapted at the watershed level as representative of urban drainage area. In this analysis, different rainfall frequencies, land uses, drainage patterns, basin shapes and detention storage policies are considered. Flow reduction effect of detention storage facilities is deduced from storage ratio and detention basin factor. A substantial saving in detention storage volumes is achieved when the detention storage is planned at the watershed level than the catchment level. For the application of real watersheds, two watersheds in Seoul metropolitan area-Jamshil 2, Seongnae 1-are selected on the basis of hydrologic response characteristics. Through the regression analysis between dimensionless detention storage volume, dimensionless upstream area ratio and reduction rate of storage ratio, the regression equations to determine the size and location of detention storage facilities are presented.

  • PDF

The Effect of Connected Bioretention on Reduction of Surface Runoff in LID Design (LID 설계시 식생체류지간 연결에 의한 강우유출수 저감 효과분석)

  • Jeon, Ji-Hong;Seo, Seong-Cheol;Park, Chan-Gi
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.562-569
    • /
    • 2016
  • Recently, Low Impact Development (LID) is being used in Korea to control urban runoff and nonpoint source pollution. In this study, we evaluated the reduction of surface runoff from a study area, as the effect of connecting three bioretention as LID-BMP. Surface runoff and storage volume of bioretention is estimated by the Curve Number (CN) method. In this study, the storage volume of bioretention is divided by the volume of surface runoff and precipitation which directly enters the bioretention. The ratio of captured surface runoff volume to storage volume is highly influenced by the ratio of drainage area to surface area of bioretention. The high bioretention surface area-to-drainage area ratio captures more surface runoff. The ratio of 1.2 captures 51~54% of the total surface runoff, ranging from 5-30cm of bioretention depth; a ratio of 6.2 captures 81~85%. Three connected bioretentions could therefore captures much more runoff volume, ranging from $35.8{\sim}167.3m^3$, as compared to three disconnected bioretentions at their maximum amount of precipitation with non-effluent from the connecting three bioretentions. Hence, connecting LID-BMPs could improve the removal efficiencies of surface runoff volume and nonpoint source pollution.

Evaluation of Inland Inundation Risk in Urban Area using Fuzzy AHP (Fuzzy AHP 기법을 이용한 도시지역의 내수침수위험도 평가)

  • Shin, Ji Yae;Park, Yei Jun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.789-799
    • /
    • 2014
  • This study presented how to evaluate the inland inundation risk considering the characteristics of inland flood. Fuzzy AHP (Analytic Hierarchy Process), which can deal with the uncertainty or ambiguousness of the decision-making process, was used to estimate the inundation risk. The criteria used for inland inundation risk include the physical index, social index and inland flood. Each index contains three detailed indicators then total nine indicators were employed in this study. The inundation risk evaluation was carried out for each node (manhole) within the drainage system, not to the administrative extent, which enabled us to point out nodes with high risk. The proposed Fuzzy AHP was applied to Geoje district in Busan. The results indicated that the junction of Oncheoncheon and Geojecheon has high risk which is consistent with the fact that this junction has already experienced floods in the past. The proposed method can be used for evaluating inland inundation risk and preparing flood prevention plans in inland flood-prone urban areas.

Performance Evaluation of Subsurface-flow Wetland with Media Possessing Different Adsorption Capacities for Nitrogen and Phosphorus (질소 및 인에 대한 흡착특성이 다른 여재를 사용한 지하흐름형 인공습지 효율 평가)

  • Seo, Jun-Won;Jang, Hyung-Suk;Kang, Ki-Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.155-160
    • /
    • 2007
  • Constructed wetland has been widely used for the treatment of sewage, stormwater runoff, industrial wastewater, agricultural runoff, acid mine drainage and landfill leachate. For the removal of nitrogen and phosphorus, uptake by plants and adsorption to media material are the major processes, and, therefore, the selection of media with specific adsorption capacity is the critical factor for the optimal design of wetland along with the selection of appropriate plant species. In this study, two media materials (loess bead and mixed media) possessing different adsorption characteristics for ammonium and phosphate were selected, and their adsorption characteristics were evaluated. In addition, the performance of subsurface-flow wetland systems employing these media was evaluated in both batch and continuous flow systems. With LB medium, beter phosphorus removal was observed, while better ammonia removal was obtained with MM medium. In addition, enhanced removal efficiencies were observed in the wetland systems employing both media and aquatic plants, mainly due to the better environment for microbial growth. As a result, appropriate selection or combination of media with respect to the inflow water quality maybe important factors for the successful design and operation of wetland systems.

Development and Application of the Rainwater Infiltrating Equipment for the Decentralized Stormwater Managements (분산식 우수관리를 위한 침투통 개발 및 적용효과 분석)

  • 성종상;이태구;한영해;김연금;김남희
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.78-85
    • /
    • 2004
  • To manage rainwater environmentally friendly, it is necessary to let the rainwater be infiltrated naturally and make reservoirs to detain it in the chosen spot. Not only should it be prepared to handle the city flood, but also it be a necessary alternative for establishing the ecological water circular system in cities. Therefore, considering the present rainwater. management system, this study analysed the status of products which can be interchanged from existent systems to rainwater infiltrating systems. In this study, the infiltrating equipment that is applicable to the Korean drainage system was developed. The case was studied out to investigate the effects of infiltrating and the detaining ability of the developed product. The case site, block 6 of Sang-am residence, was selected and analyzed. The amount of infiltration and detention per unit of the introduced facilities, i.e., infiltrating pipes and tanks were calculated. In this research, the amount of each infiltrating tank was revealed to be 1.353 m/hr and the amount of detention as 0.299 m/hr. And the amount of each infiltrating pipe was found to be 0.541 m/hr and the amount of detention was 0.118 m/hr. To examine the effects of the system, the total amount of the outlet before and after installing was compared and calculated. In doing this, a basis for deciding the arrangement and number of tanks and pipes of the infiltrating system was made.