• Title/Summary/Keyword: Storm wave

Search Result 208, Processing Time 0.021 seconds

Effects of Storm Waves Caused by Typhoon Bolaven (1215) on Korean Coast: A Comparative Analysis with Deepwater Design Waves

  • Taegeon Hwang;Seung-Chul Seo;Hoyeong Jin;Hyeseong Oh;Woo-Dong Lee
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.149-163
    • /
    • 2024
  • This paper employs the third-generation simulating waves nearshore (SWAN) ocean wave model to estimate and analyze storm waves induced by Typhoon Bolaven, focusing on its impact along the west coast and Jeju Island of Korea. Utilizing reanalyzed meteorological data from the Japan Meteorological Agency meso scale model (JMA-MSM), the study simulated storm waves from Typhoon Bolaven, which maintained its intensity up to high latitudes as it approached the Korean Peninsula in 2012. Validation of the SWAN model against observed wave data demonstrated a strong correlation, particularly in regions where wind speeds exceeded 20 m/s and wave heights surpassed 5 m. Results indicate significant storm wave heights across Jeju Island and Korea's west and southwest seas, with coastal grid points near islands recording storm wave heights exceeding 90% of the 50-year return period design wave heights. Notably, specific grid points near islands in the northern West Sea and southwest Jeju Island estimated storm wave heights at 90.22% and 91.48% of the design values, respectively. The paper highlights the increased uncertainty and vulnerability in coastal disaster predictions due to event-driven typhoons and emphasizes the need for enhanced accuracy and speed in typhoon wave predictions amid the escalating climate crisis.

Storm Surge Analysis using Archimedean Copulas (Copulas에 기반한 우리나라 동해안 폭풍해일 분석)

  • Hwang, Jeongwoo;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.421-421
    • /
    • 2017
  • In order to secure the safety of coastal areas from the continuous storm surge in Korea, it is important to predict the wave movement and properties accurately during the storm event. To improve the accuracy of the storm simulation, and to quantify coastal risks from the storm event, the dependencies between wave height, wave period, and storm duration should be analyzed. In this study, therefore, copulas were used to develop multivariate statistical models of sea storms. A case study of the east coast of Korea was conducted, and the dependencies between wave height, wave period, water level, storm duration and storm interarrival time were investigated using Kendall's tau correlation coefficient. As a result of the study, only wave height, wave period, and storm duration appeared to be correlated.

  • PDF

Inundation Analysis Considering Water Waves and Storm Surge in the Coastal Zone (연안역에서 고파랑과 폭풍해일을 고려한 침수해석)

  • Kim, Do-Sam;Kim, Ji-Min;Lee, Gwang-Ho;Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.35-41
    • /
    • 2007
  • In general, coastal damage is mostly occurred by the action of complex factors, like severe water waves. If the maximum storm surge height combines with high tide, severe water waves will overflow coastal structures. Consequently, it can be the cause of lost lives and severe property damage. In this study, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the coast in front of Noksan industrial complex, Korea. Moreover, the shallow water wave is estimated by applying wind field, design water level considering storm surge height for typhoon Maemi to SWAN model. Under the condition of shallow water wave, obtained by the SWAN model, the wave overtopping rate for the dike in front of Noksan industrial complex is calculated a hydraulic model test. Finally, based on the calculated wave-overtopping rate, the inundation regime for Noksan industrial complex was predicted. And, numerically predicted inundation regimes and depths are compared with results in a field survey, and the results agree fairly well. Therefore, the inundation modelthis study is a useful tool for predicting inundation regime, due to the coastal flood of severe water wave.

Characteristics of Storm Waves at Gangneung port Based on the Wave Hindcasting (파랑 후측 모의 실험 기반 강릉항 폭풍파랑 분석)

  • Ahn, Kyungmo;Hwang, Soon-mi;Chun, Hwusub
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.375-382
    • /
    • 2016
  • In the present study, the wave hindcasting has been performed, and then the characteristics of storm waves at Gangnueng port was investigated, in which the high waves are observed. Comparing the numerical results with the wave measurements at Gangneung port, Niigata, and Hamada, there were good agreements between them. In particular, the Pearson correlation coefficients of significant wave heights and peak periods at Gangneung port were 0.92 and 0.72, respectively. Then the extreme wave analysis on the significant wave heights was carried out for the estimation of the frequency of storm waves. In this analysis, the storm waves over the threshold were fitted to GPD(Generalized Pareto Distribution). According to this analysis, the return period of the storm wave on February, 24, 2008, one of the large storm waves at Gangneung port, was 8.2 months. Among the computed significant wave heights larger than one-year wave, 58.3% of them were resulted from the storm, while the others were from the typhoon. Additionally, the regression analysis on the waves larger than one-month wave has been conducted, and then the relationship between the computed significant wave heights and the significant wave period, $T_{1/3}=7H_s^{0.25}$ was obtained.

Hindcasting of Storm Surge at Southeast Coast by Typhoon Maemi

  • KAWAI HIROYASU;KIM DO-SAM;KANG YOON-KOO;TOMITA TAKASHI;HIRAISHI TETSUYA
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.12-18
    • /
    • 2005
  • Typhoon Maemi landed on the southeast coast of Korea and caused a severe storm surge in Jinhae Bay and Masan Bay. The tide gage in Masan Port recorded the storm surge of a maximum of more than 2m and the area of more than 700m from the Seo Hang Wharf was flooded by the storm surge. They had not met such an extremely severe storm surge since the opening of the port. Then storm surge was hindcasted with a numerical model. The typhoon pressure was approximated by Myers' empirical model and super gradient wind around the typhoon eye wall was considered in the wind estimation. The land topography surrounding Jinhae Bay and Masan Bay is so complex that the computed wind field was modified with the 3D-MASCON model. The motion of seawater due to the atmospheric forces was simulated using a one-layer model based on non-linear long wave approximation. The Janssen's wave age dependent drag coefficient on the sea surface was calculated in the wave prediction model WAM cycle 4 and the coefficient was inputted to the storm surge model. The result shows that the storm surge hindcasted by the numerical model was in good agreement with the observed one.

Patterns of Water Level Increase by Storm Surge and High Waves on Seawall/Quay Wall during Typhoon Maemi (태풍 매미 내습시 해일$\cdot$고파랑에 의한 호안$\cdot$안벽에서의 수위증가 패턴 고찰)

  • Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.22-28
    • /
    • 2005
  • We investigated the characteristics of the overflow/wave overtopping, induced by the storm surge and high waves in Masan bay and Busan Coast during Typhoon 'Maemi', which landed at the southeast coast of the Korean peninsula on September, of 2003, causing a severe inundation disaster. Characteristics of the water level, increase by the overflow / wave overtopping, were discussed in two patterns. One is the increase of water level in the region, located inside of a bay, like Masan fishing port, and the waves are relatively small. The other is in the open sea, in which the waves act directly, as on the seawall in Suyong bay. In the former region, the water level increase was affected by the storm surge, as well as the long period oscillation and waves. In Masan fishing port, about $80\%$ of the water level increase on the quay wall was caused by the storm surge. In the latter one, it was greatly affected by the wave run-up. In Suyong bay, about $90\%$ of the water level increase on the seawall was caused by the wave run-up.

Wave Responses of Buoyant Flap-typed Storm Surge Barriers - Numerical Simulation (부유 플랩형 고조방파제의 파랑응답 - 수치모의)

  • Jeong, Shin-Taek;Ko, Dong-Hui;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.196-208
    • /
    • 2009
  • In this paper, wave responses of buoyant flap-typed storm surge barriers was studied numerically. Wave motions were modeled by using a linear potential wave theory, and behaviors of structures were represented as a Newton's 2nd law of motion. The near field region of the fluid was discretized as conventional quadratic iso-parametric elements, while the far field was modeled as infinite elements. Comparisons with the results from hydraulic model tests show that the present model gives good results. By using the model, the applicability of a buoyant flap-typed storm surge barrier in Masan bay was investigated considering field environmental conditions.

Trends of the Storm Wave Appearance on the East Coast Analyzed by using Long-term Wave Observation Data (장기실측 파랑자료 분석을 통한 동해안 폭풍파 출현 추세)

  • Jeong, Weon Mu;Ryu, Kyong-Ho;Oh, Sang-Ho;Baek, Won-dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.2
    • /
    • pp.109-115
    • /
    • 2016
  • The trend in appearance of storm waves on the east coast of Korea was investigated based on long-term wave data observed at six different stations. At the four wave stations of KIOST (Sokcho, Mukho, Hupo, and Jinha), no notable trend was found during the observation period with respect to the annual average and maximum values of the significant wave height. In addition, the annual number of the appearance of storm waves showed decreasing trend at the three stations except Jinha, where slightly increasing trend of the quantity was recognized. In contrast, at Donghea ocean data buoy of KMA, abruptly increasing trend was found for the annual average and maximum of the significant wave height and for the annual number of the appearance of storm waves as well, demonstrating lack of consistency in the observation data from Donghea buoy of KMA.

Wave Hindcasting on the Storm Waves at the Korean Straits of April, 2016 (2016년 4월 대한해협 폭풍파랑 후측모의 실험)

  • Chun, Hwusub;Ahn, Kyungmo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.36-45
    • /
    • 2017
  • In the present study, the storm waves at the Korean Straits of April, 2016 have been reproduced by the wave hindcasting, and then their characteristics were investigated. Before the wave hindcasting, the wave measurements at the Korean Straits were analyzed. The analysis showed that the waves at the Korean Straits were dominated by the Northeastern waves, same as those in the East Sea. Accordingly, the wave hindcasting was been carried out with the same condition in Ahn et al. (2016). In the numerical results, the maximum significant wave height at the Korean Straits was 5.06 m, and the corresponding significant wave period was 9.2 s. The computed significant wave heights and wave periods were overestimated by 4 cm and 0.8 s, respectively. After the wave hindcasting, the computed significant wave heights and peak periods were compared with the JONSWAP relationship. This comparison showed that the storm waves at the Korean Straits were close to wind waves, not swell.

Field Observation and Quasi-3D Numerical Modeling of Coastal Hydrodynamic Response to Submerged Structures

  • Yejin Hwang;Kideok Do;Inho Kim;Sungyeol Chang
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.68-79
    • /
    • 2023
  • Even though submerged breakwater reduces incident wave energy, it redistributes the coastal area's wave-induced current, sediment transport, and morphological change. This study examines the coastal hydrodynamics and the morphological response of a wave-dominated beach with submerged breakwaters installed through field observation and quasi-3D numerical modeling. The pre-and post-storm bathymetry, water level, and offshore wave under storm forcing were collected in Bongpo Beach on the East coast of Korea and used to analyze the coastal hydrodynamic response. Four vertically equidistant layers were used in the numerical simulation, and the wave-induced current was examined using quasi-3D numerical modeling. The shore normal incident wave (east-northeast) generated strong cross-shore and longshore currents toward the hinterland of the submerged breakwater. However, the oblique incident wave (east-southeast) induced the southeastward longshore current and the sedimentation in the northeast area of the beach. The results suggested that the incident wave direction is a significant factor in determining the current and sediment transport patterns in the presence of the submerged breakwaters. Moreover, the quasi-3D numerical modeling is more appropriate for estimating the wave transformation, current, and sediment transport pattern in the coastal area with the submerged breakwater.