• 제목/요약/키워드: Storm Event

검색결과 250건 처리시간 0.031초

강우유출수 관리시설의 설계를 위한 강우사상 특성 분석 (Analysis of Storm Event Characteristics for Stormwater Best Management Practices Design)

  • 김학관;지현서;장선숙
    • 한국농공학회논문집
    • /
    • 제59권6호
    • /
    • pp.73-80
    • /
    • 2017
  • The objective of this study is to investigate whether the daily rainfall depth derived from daily data represents the event rainfall depth derived from hourly data. For analysis, the 85th, 90th, and 95th percentile daily rainfall depths were first computed using daily rainfall data (1986~2015) collected at 63 weather stations. In addition, the storm event was separated by the interevent time definition (IETD) of 6, 12, 18, and 24 hr using hourly rainfall data. Based on the separated storm events, the 85th, 90th, and 95th percentile event rainfall depths were calculated and compared with the using hourly rainfall data with the 85th, 90th, and 95th percentile daily rainfall depths. The event rainfall depths computed using the IETD were greater than the daily rainfall depths. The difference between the event rainfall depth and the daily rainfall depth affects the design and size of the facility for controlling the stormwater. Therefore, the designer and policy decision-maker in designing the stormwater best management practices need to take into account the difference generated by the difference of the used rainfall data and the selected IETD.

How to forecast solar flares, solar proton events, and geomagnetic storms

  • Moon, Yong Jae
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.33-33
    • /
    • 2013
  • We are developing empirical space weather (solar flare, solar proton event, and geomagnetic storm) forecast models based on solar data. In this talk we will review our main results and recent progress. First, we have examined solar flare (R) occurrence probability depending on sunspot McIntosh classification, its area, and its area change. We find that sunspot area and its increase (a proxy of flux emergence) greatly enhance solar flare occurrence rates for several sunspot classes. Second, a solar proton event (S) forecast model depending on flare parameters (flare strength, duration, and longitude) as well as CME parameters (speed and angular width) has been developed. We find that solar proton event probability strongly depends on these parameters and CME speed is well correlated with solar proton flux for disk events. Third, we have developed an empirical storm (G) forecast model to predict probability and strength of a storm using halo CME - Dst storm data. For this we use storm probability maps depending on CME parameters such as speed, location, and earthward direction. We are also looking for geoeffective CME parameters such as cone model parameters and magnetic field orientation. We find that all superstorms (less than -200 nT) occurred in the western hemisphere with southward field orientations. We have a plan to set up a storm forecast method with a three-stage approach, which will make a prediction within four hours after the solar coronagraph data become available. We expect that this study will enable us to forecast the onset and strength of a geomagnetic storm a few days in advance using only CME parameters and the WSA-ENLIL model. Finally, we discuss several ongoing works for space weather applications.

  • PDF

독립호우사상의 확률론적 해석 : 2. 호우사상의 재현기간 (Probabilistic Analysis of Independent Storm Events: 2. Return Periods of Storm Events)

  • 유철상;박민규
    • 한국방재학회 논문집
    • /
    • 제11권2호
    • /
    • pp.137-146
    • /
    • 2011
  • 본 연구에서는 이변량 극치분포를 이용하여 연최대치 호우사상을 평가하였다. 이를 위해 특정 재현기간을 가지는 호우사상의 강우량을 비동시결합 재현기간, 동시결합 재현기간 그리고 구간조건부 결합재현기간의 세 가지를 이용하여 산정하였다. 이때, 결합재현기간별 호우사상의 값의 크기가 서로 다르게 산정되는 이유를 이변량 분포의 확률특성을 보여주는 사분면을 이용하여 설명하였다. 호우지속기간 24시간인 경우에 동시결합재현기간을 이용하여 산정한 확률강우량은 전통적인 방법으로 얻어진 강우지속기간 24시간의 확률강우량과 유사하게 나타났다. 이러한 결과는 전통적인 강우빈도해석의 제약사항을 극복하는데 도움이 될 것으로 보여진다. 이변량 빈도해석으로 얻어진 확률호우사상은 저류시설물의 계획시 통계적으로 보다 유용하면서도 간단한 설계 호우사상을 제공할 수 있을 것으로 보여진다.

Copulas에 기반한 우리나라 동해안 폭풍해일 분석 (Storm Surge Analysis using Archimedean Copulas)

  • 황정우;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.421-421
    • /
    • 2017
  • 현재 우리나라에서 끊임없이 발생하고 있는 폭풍해일로부터 연안지역의 안전을 확보하기 위해서는 태풍 시 파랑의 거동 및 특성을 정확히 예측하는 것이 중요하다. 폭풍해일 모의실험의 정확성을 향상시키고 폭풍해일의 위험성을 정량화하기 위해서는 해일파고, 파주기, 그리고 폭풍 지속시간 간의 상관성이 분석되어야한다. 이를 위해 본 연구에서는 Copulas(Archimedean) 이론을 이용하여 폭풍해일에 대한 다변량 통계분석이 이루어졌다. 동해안 연안에서 나타나는 파고, 파주기, 태풍 지속시간, 해면수위, 태풍 도착간격시간 간의 의존성을 켄달의 타우 상관계수를 이용하여 조사하였다. Copulas 다변량 통계분석의 결과, 오직 파고와 파주기, 그리고 태풍지속시간만이 명확한 상관성을 나타냈다.

  • PDF

강우시 합류식 하수관거의 유출특성 분석 (Analysis of Storm Water Run-off Characteristics during Wet Weather)

  • 최성현;최승철;박은영;임재명
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.95-101
    • /
    • 2002
  • Much of domestic city is served by combined sewer system rather than separate sanitary or storm sewers. During wet weather, when the volume of sanitary sewage and storm water entering the combined sewers exceeds the system capacity, the system is designed to overflow at several designated CSOs. The objective of this research is to have grasp of characteristics of combined sewer runoff and to evaluate efficiently the intercepted volume of CSOs. During the wet weather in first rainfall, SS load at each site H-1, H-2, and H-3 were 600kg/event, 370kg/event, and 289kg/event, SS load at each site in second rainfall were 216kg/event, 113kg/event, and 37.2kg/event. EMCs at each site were 702mg/L, 816mg/L, 861mg/L in first rainfall and 99.9mg/L, 161.9mg/L, 103.6mg/L in second rainfall, respectively. First flush coefficients b at each site were 0.237, 0.166, and 0.151.

  • PDF

밭경사에 따른 강우유출수 내의 비점오염물질 특성 비교 분석 (A study on Compare Characteristics of Nonpoint Source in Storm-water versus Steepness of Field Slope)

  • 김기철;최용훈;원철희;최중대
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1093-1102
    • /
    • 2009
  • This study was focused on analyse Nonpoint source characteristics from Flat slope field and Steep slope field. We performed Storm-water monitering for obtain flow data and concentration data. Totally, eleven times Event was occurred. We calculated EMC(Event Mean Concentration) and Pollutants Loads using data we obtained. As a result, steep slope field has more discharge than flat field. SS value, one of the water quality contents, has largest variation and T-N has least variation. There is runoff differences even though events has same rainfall. We assume that not only amount of Rainfall, but also Rainfall Duration Times, Intensity, Number of Previous Non-precipitation days can affect to Run-off.

  • PDF

A CASE STUDY TO DETERMINE THE RELATIONSHIP OF RELATIVISTIC ELECTRON EVENTS TO SUBSTORM INJECTIONS AND ULF POWERS

  • Hwang Junga;Min Kyoung Wook;Lee Ensang;Lee China;Lee Dae Young
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.380-383
    • /
    • 2004
  • We study the two storm events of 1997: one in May that was accompanied by a relativistic electron event (REE) and the other in September, with a more profound Dst decrease, but with no significant flux increase of relativistic electrons. We find that a larger amount of seed electrons was present in the May event compared to that of the September storm, whereas the ULF (ultra low frequency) power was more enhanced and the particle spectrum was harder in the September event. Hence, we demonstrate that a larger storm does not necessarily produce more seed electrons and that the amount of seed electrons is an important factor in an actual increase in REE flux levels, while ULF can harden the particle spectra without causing an apparent REE.

  • PDF

기후변화에 따른 미래 극한호우사상이 소양강댐 유역의 유량 및 유사량에 미치는 영향 (Potential Impacts of Future Extreme Storm Events on Streamflow and Sediment in Soyang-dam Watershed)

  • 한정호;이동준;강부식;정세웅;장원석;임경재;김종건
    • 한국물환경학회지
    • /
    • 제33권2호
    • /
    • pp.160-169
    • /
    • 2017
  • The objective of this study are to analyze changes in future rainfall patterns in the Soyang-dam watershed according to the RCP 4.5 scenario of climate change. Second objective is to project peak flow and hourly sediment simulated for the future extreme rainfall events using the SWAT model. For these, accuracy of SWAT hourly simulation for the large scale watershed was evaluated in advance. The results of model calibration showed that simulated peak flow matched observation well with acceptable average relative error. The results of future rainfall pattern changes analysis indicated that extreme storm events will become more severe and frequent as climate change progresses. Especially, possibility of occurrence of large scale extreme storm events will be greater on the periods of 2030-2040 and 2050-2060. In addition, as shown in the SWAT hourly simulation for the future extreme storm events, more severe flood and turbid water can happen in the future compared with the most devastating storm event which occurred by the typhoon Ewiniar in 2006 year. Thus, countermeasures against future extreme storm event and turbid water are needed to cope with climate change.

Development of an Operational Storm Surge Prediction System for the Korean Coast

  • Park, Kwang-Soon;Lee, Jong-Chan;Jun, Ki-Cheon;Kim, Sang-Ik;Kwon, Jae-Il
    • Ocean and Polar Research
    • /
    • 제31권4호
    • /
    • pp.369-377
    • /
    • 2009
  • Performance of the Korea Ocean Research and Development Institute (KORDI) operational storm surge prediction system for the Korean coast is presented here. Results for storm surge hindcasts and forecasts calculations were analyzed. The KORDI storm surge system consists of two important components. The first component is atmospheric models, based on US Army Corps of Engineers (CE) wind model and the Weather Research and Forecasting (WRF) model, and the second components is the KORDI-storm surge model (KORDI-S). The atmospheric inputs are calculated by the CE wind model for typhoon period and by the WRF model for non-typhoon period. The KORDI-S calculates the storm surges using the atmospheric inputs and has 3-step nesting grids with the smallest horizontal resolution of ${\sim}$300 m. The system runs twice daily for a 72-hour storm surge prediction. It successfully reproduced storm surge signals around the Korean Peninsula for a selection of four major typhoons, which recorded the maximum storm surge heights ranging from 104 to 212 cm. The operational capability of this system was tested for forecasts of Typhoon Nari in 2007 and a low-pressure event on August 27, 2009. This system responded correctly to the given typhoon information for Typhoon Nari. In particular, for the low-pressure event the system warned of storm surge occurrence approximately 68 hours ahead.

End-Member Mixing Analysis를 이용한 산림 소유역의 임상별 유출분리 비교 (Comparing of Hydrograph Separation in deciduous and coniferous catchments using the End-Member Mixing Analysis)

  • 김수진;최형태
    • 한국지형학회지
    • /
    • 제23권1호
    • /
    • pp.77-85
    • /
    • 2016
  • To understand the difference of runoff discharge processes between Gwangneung deciduous and coniferous forest catchments, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge) and conducted hydrochemical analyses in the deciduous and coniferous forest catchments in Gwangneung National Arboretum in the northwest part of South Korea. Based on the end-member mixing analysis of the three storm events during the summer monsoon in 2005, the hillslope runoff in the deciduous forest catchment was higher 20% than the coniferousforest catchment during the firststorm event. Howerver, hillslope runoff increased from the second storm event in the coniferous catchment. We conclude that low soil water contents and topographical gradient characteristics highly influence runoff in the coniferous forest catchment during the first storm events. In general, coniferous forests are shown high interception loss and low soil moisture compared to the deciduous forests. It may also be more likely to be a reduction in soil porosity development when artificial coniferous forests reduced soil biodiversity. The forest soil porosity is an important indicator to determine the water recharge of the forest. Therefore, in order to secure the water resources, it should be managed coniferous forests for improving soil biodiversity and porosity.