• Title/Summary/Keyword: Stored precipitation fraction

Search Result 2, Processing Time 0.016 seconds

Surface soil moisture memory using stored precipitation fraction in the Korean peninsula (토양 내 저장 강수율을 활용한 국내 표층 토양수분 메모리 특성에 관한 연구)

  • Kim, Kiyoung;Lee, Seulchan;Lee, Yongjun;Yeon, Minho;Lee, Giha;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • The concept of soil moisture memory was used as a method for quantifying the function of soil to control water flow, which evaluates the average residence time of precipitation. In order to characterize the soil moisture memory, a new measurement index called stored precipitation fraction (Fp(f)) was used by tracking the increments in soil moisture by the precipitation event. In this study, the temporal and spatial distribution of soil moisture memory was evaluated along with the slope and soil characteristics of the surface (0~5 cm) soil by using satellite- and model-based precipitation and soil moisture in the Korean peninsula, from 2019 to 2020. The spatial deviation of the soil moisture memory was large as the stored precipitation fraction in the soil decreased preferentially along the mountain range at the beginning (after 3 hours), and the deviation decreased overall after 24 hours. The stored precipitation fraction in the soil clearly decreased as the slope increased, and the effect of drainage of water in the soil according to the composition ratio of the soil particle size was also shown. In addition, average soil moisture contributed to the increase and decrease of hydraulic conductivity, and the rate of rainfall transfer to the depths affected the stored precipitation fraction. It is expected that the results of this study will greatly contribute in clarifying the relationship between soil moisture memory and surface characteristics (slope, soil characteristics) and understanding spatio-temporal variation of soil moisture.

Preparation and Characterization of a Propofol-loaded Polymeric Micellar System: Nanoparticular Stability

  • Cho, Jae-Pyoung;Cho, Jin-Cheol;Oh, Eui-Chaul
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.393-398
    • /
    • 2008
  • A propofol delivery system was prepared using two biocompatible polymeric surfactants, poloxamer 407 and PEG 400. The nanoparticular stability of the micellar system was evaluated in terms of temperature change, storage time and composition. The particle size of the system was slightly increased with elevating temperature from $4^{\circ}C$ to $25^{\circ}C$, but its distribution was unimodal. At $40^{\circ}C$, the system presented a bimodal particle size distribution and the increase in the fraction of particles larger than 15 nm. This result might be due to the expansion of the nanoparticles through micellar swelling at the high temperature. It was found that propofol was gradually come out of the system, stored for a month at three different temperatures (4, 25 and $40^{\circ}C$). The drug loss was apparently dependent on temperature and the system composition. Increasing temperature induced the acceleration of the drug loss of $7{\sim}10%$ at $4^{\circ}C$ and $14{\sim}16 %$ at $40^{\circ}C$. This may be owing to the high diffusivity resulting from the swelling of the hydrophilic surface of the nanoparticle at high temperature. However, the addition of PEG 400 to the system led to the reduction of the drug loss. This result is associated with the previous investigation that PEG coverage decreased diffusion coefficient because of the formation of the denser structure on the surface of nanoparticulate. Nevertheless, the limited amount of PEG, less than 2% (w/v), should be used to prevent the precipitation and discoloration of the system.