• Title/Summary/Keyword: Storage capacity

Search Result 2,114, Processing Time 0.023 seconds

Blue Carbon Resources in the East Sea of Korea and Their Values and Potential Applications (동해안 블루카본 자원의 가치와 활용방안)

  • Yoon, Ho-Sung;Do, Jeong-Mi;Jeon, Byung Hee;Yeo, Hee-Tae;Jang, Hyeong Seok;Yang, Hee Wook;Suh, Ho Seong;Hong, Ji Won
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.578-587
    • /
    • 2022
  • Korea, as the world's 7th largest emitter of greenhouse gases, has raised the national greenhouse gas reduction target as international regulations have been strengthened. As it is possible to utilize coastal and marine ecosystems as important nature-based solutions (NbS) for implementing climate change mitigation or adaptation plans, the blue carbon ecosystem is now receiving attention. Blue carbon refers to carbon that is deposited and stored for a long period after carbon dioxide (CO2) is absorbed as biomass by coastal ecosystems or oceanic ecosystems through photosynthesis. Currently, there are only three blue carbon ecosystems officially recognized by the Intergovernmental Panel on Climate Change (IPCC): mangroves, salt marshes, and seagrasses. However, the results of new research on the high CO2 sequestration and storage capacity of various new blue carbon sinks, such as seaweeds, microalgae, coral reefs, and non-vegetated tidal flats, have been continuously reported to the academic community recently. The possibility of IPCC international accreditation is gradually increasing through scientific verification related to calculations. In this review, the current status and potential value of seaweeds, seagrass fields, and non-vegetated tidal flats, which are sources of blue carbon on the east coast, are discussed. This paper confirms that seaweed resources are the most effective NbS in the East Sea of Korea. In addition, we would like to suggest the direction of research and development (R&D) and utilization so that new blue carbon sinks can obtain international IPCC certification in the near future.

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.

Design and Economic Analysis of Low Pressure Liquid Air Production Process using LNG cold energy (LNG 냉열을 활용한 저압 액화 공기 생산 공정 설계 및 경제성 평가)

  • Mun, Haneul;Jung, Geonho;Lee, Inkyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.345-358
    • /
    • 2021
  • This study focuses on the development of the liquid air production process that uses LNG (liquefied natural gas) cold energy which usually wasted during the regasification stage. The liquid air can be transported to the LNG exporter, and it can be utilized as the cold source to replace certain amount of refrigerant for the natural gas liquefaction. Therefore, the condition of the liquid air has to satisfy the available pressure of LNG storage tank. To satisfy pressure constraint of the membrane type LNG tank, proposed process is designed to produce liquid air at 1.3bar. In proposed process, the air is precooled by heat exchange with LNG and subcooled by nitrogen refrigeration cycle. When the amount of transported liquid air is as large as the capacity of the LNG carrier, it could be economical in terms of the transportation cost. In addition, larger liquid air can give more cold energy that can be used in natural gas liquefaction plant. To analyze the effect of the liquid air production amount, under the same LNG supply condition, the proposed process is simulated under 3 different air flow rate: 0.50 kg/s, 0.75 kg/s, 1.00 kg/s, correspond to Case1, Case2, and Case3, respectively. Each case was analyzed thermodynamically and economically. It shows a tendency that the more liquid air production, the more energy demanded per same mass of product as Case3 is 0.18kWh higher than Base case. In consequence the production cost per 1 kg liquid air in Case3 was $0.0172 higher. However, as liquid air production increases, the transportation cost per 1 kg liquid air has reduced by $0.0395. In terms of overall cost, Case 3 confirmed that liquid air can be produced and transported with $0.0223 less per kilogram than Base case.

A Study on Red Cell Protoporphyrin Concentration and Iron Metabolism (적혈구(赤血球) Protoporphyrin과 철분대사(鐵分代謝)에 관(關)한 연구(硏究))

  • Cho, Kyung-Hwan;Tchai, Bum-Suk
    • Journal of Nutrition and Health
    • /
    • v.7 no.3
    • /
    • pp.1-13
    • /
    • 1974
  • The relative state of human iron storage may be ascertained more reliably through determination of the serum iron, iron binding capacity, transferrin saturation and absorption of radioactive iron in conjunction with studies of red cell morphology than from the study of red cell morphology alone. Recent investigations have shown that there is an increase in red cell protoporphyrin concentration in iron deficiency anemia. The significance of the red cell protoporphyrin has been discussed greatly during the years since its discovery. Two of the main factors which appear to influence the amaunt of protoporphyrin are increased erythropoiesis and factors interfering with the utilization of iron in the synthesis of hemoglobin, and iron deficiency. Recently Heller et al. have described a simplified method for blood protoporphyrin assay and this technique could be used assess nutritional iron status, wherein even minor insufficiencies are detectable as increased protoporphyrin concentrations. Based on the evaluation of the relationship between nutritional iron status and red cell protoporphyrin as an index suitable for the detection of the iron deficiency is described in this paper. RESULTS 1. Hemoglobin Concentrations and Anthropometric Measurements. The mean and standard deviations of the various anthropometric measurements of different age and sex groups are shown in table 1. There measurements have been compared with the Korean Standard. In the absence of local standards for arm circumference and skin-fold thickness over triceps, they have been compared with the standard from Jelliffe. Table 2,3, and 4 give anthropometric measurements and frequency (%) of anemia in children surveyed. The mean height of the children studid was 10 to 20 percent; below the Korean Standard. The distribution of height below 80 percent of the Standard was 21.2 percent, however, among anemic group this percentage was 27.7 percent. In general, the mean weight of the children was 10 to 15 percent below the Korean Standard. The percentage of children with weight less than 80 percent of the Standard was about 35 percent. But in the anemic group of the children, this percentage was 44 percent. The mean arm circumference was about 15 percent lower than the Jelliffe's standard. 61.2 percent of the children had values of arm circumference below 80 percent of the standard. Children with low hemoglobin levels, this percentage was 80 percent. The mean skinfold thickness over the triceps of the children studied was about 25 Percent lower than the Jelliffe's standard and 61.2 percent of the children had the value less than 80 percent of the standard. Among anemic children, this percentage was 70.8%. As may be seen from table 5, the mean hemoglobin concentration of the total group was 11.3g/100ml. Hemoglobin concentration was less than 11.0g/100ml. in 65(36.5%) of the 178 children. The degree of anemia in most of these children was mild with a hemoglobin level of less than 8.0g/100ml. found in only one child. In general, the prevalence of anemia was high in female children than male and decreased its frequency with increasing age. Relatively close relationship was observed between hemoglobin level and anthrophometric measurements especially high between arm circumference and skinfold thickness and hemoglobin but very low in height and low in weight and hemoglobin level, estimated by chi-square value. II. Serum iron, Transferrin saturation (1) Serum iron, and transferrin saturation Serum iron, transferrin saturation and red cell protoporphyrin concentrations were estimated in sub-sample of 84 children from 1 to 6 years and 24 older children between 7 and 13 years of age. The findings are presented in table 6. The mean serum iron concentration of the total group was 59ug/100ml. However, the level incrased with age from 36.6ug/100ml. (1-3years) to 80.8ug/100ml. (7-13 years). 60 percent of these children had a serum iron level less than 50ug/10ml. in the 1-3 years age group and 31.4 percent for 4-6 years group. These contrast with the finding of 12.5 percent anemic children in the 7-13 years age group. The mean transferrin saturation for the total group was 18.1 percent and frequency of anemia by transferrin saturation was observed same pattern as serum iron concentration. (2) Red cell protoporphyrin concentrations. (a) Red cell protoporphrin levels of children: Red cell protoporphyrin and other biochemical data are shown in table 4. The mean concentration in red cell of all children was fround 46.3ug/100ml. RBC. and differences with age groups were observed; in the age group 1-3 years, the mean concentration was $59.5{\pm}32.14$ ug/100ml. RBC; 4-6 years $44.1{\pm}22.57$ ug/100ml. RBC. and 7-13 years, $39.0{\pm}13.56$ ug/100ml. RBC. (b) Normal protoporphyrin values in adults: It was observed that in 10 normal adult males studied here the level of protoporphyrin in red cell ranged from 18 to 54 ug/100ml. RBC. and the mean concentration was $47.5{\sim}14.47$ ug/100ml. RBC. Other biochemical determination made on the same subjects are presented in table 8. (c) Red tell protoporphyrin concentration of occupational blood donors: The results of analyses for red cell protoporphyrin as well as serum iron, transferrin saturation and hemoglobin in the 76 blood donors are presented in table 7 and 8. In this experiment, donors were selected at random, however, most of them bled repeatedly because of poor economic situation, I doubt. Table 9 shows the distribution of red cell protoporphyrin concentration and hemoglobin concentration of occupational donors. The mean hemoglobin value for the total was 11.9 g/100 ml. When iron deficiency anemia is defined as a transferrin saturation below 15%, prevalence of anemia was 47.4 percent and the mean serum iron was 27.1ug/100ml. and red cell protoporphyrin, 168.3ug/100ml. RBC. However, mean serum iron and protoporphyrin concentration of above 15% transferrin saturation were 11.6 ug/100 ml. and 58.8 ug/100 ml. RBC. respectively. The mean Protoporphyrin concentration of non-anemic (above 15% transferrin saturation) donors was slightly higher than the results of normal adult males.

  • PDF