• Title/Summary/Keyword: Storage System

Search Result 6,934, Processing Time 0.059 seconds

Modeling and Optimization of Rice Drying and Storage System in Korea(I) -Layout and Design of Model System- (한국에 있어서 미곡(米穀)의 건조(乾燥) 및 저장(貯藏)을 위한 시스템의 모델 개발 및 적정규모 선정에 관한 연구(I) -모델 시스템의 Layout 및 설계-)

  • Park, Kyung-Kyoo
    • Journal of Biosystems Engineering
    • /
    • v.11 no.2
    • /
    • pp.66-75
    • /
    • 1986
  • In order to improve the traditional post harvest system in Korea, a model for mechanized grain drying and storage facilities was developed. Also, a computer program for the model system was developed. For the study, flat type steel bin and circulation type dryer were selected for the model and Fortran language was used for the computer program. This program was tested by using various practical data. The following results were obtained from the study: 1. The general model developed can be used for designing a rough rice drying and storage facility within the range from 100 ton to 1000 ton capacity. 2. Major output of the computer program for designing a model system were as follow; a. The dimension of the plant. b. The storage bin size, dryer number and dryer size. c. The dimension of individual equipment and its required HP. d. Capital requirement and operating cost of the model system.

  • PDF

Intermediate Holographic Data Storage System by Using Sequentially Superimposed Recording

  • Yi, Jong-Su;Lee, Yeon-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.456-463
    • /
    • 2009
  • We introduce a holographic data storage system for intermediating between small data sets and mass holographic data recording. It employs a holographic sequentially superimposed recording technique. We discuss a time scheduling technique for making uniform reconstruction of sequentially recorded holograms and we show experimental results. We also discuss the Bragg selectivity of sequentially recorded holograms. The maximum storage density of our system is estimated to be 224kbit/$mm^2$. Our system is useful as an intermediate recording system before recording mass holographic data in a larger system.

Modelling of a High Efficiency Refrigeration System with Heat Storage for Reverse Cycle Hot Gas Defrost

  • Ardiyansyah, Ardiyansyah;Choi, Kwang-Il;Oh, Jong-Taek;Oh, Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.4
    • /
    • pp.175-181
    • /
    • 2007
  • A computer model of a high efficiency refrigeration system equipped with heat storage for reverse cycle-hot gas defrost (the stored heat is used during defrost cycle of the system) is presented. The model was developed based on both theoretical and empirical equations for the compressor, evaporator, condenser and the heat storage equipment. Simulations of the prototype system were carried out to investigate refrigeration system performance under various operating conditions during refrigeration cycles. The simulations of the evaporator during defrost cycles at 30 and $40^{\circ}C$ hot gas refrigerant temperature were also performed which resulted on shorter defrost time but only slight increase in defrost efficiency. These information on energy efficiency and the defrost time required are important in order to avoid excessive parasitic load and temperature rise of the refrigerated room.

Development of Spent Nuclear Fuel Transportation Worker Exposure Scenario by Dry Storage Methods (건식 저장방식별 사용후핵연료 운반 작업자 피폭시나리오 개발)

  • Geon Woo Son;Hyeok Jae Kim;Shin Dong Lee;Min Woo Kwak;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2024
  • Currently, there are no interim storage facilities and permanent disposal facilities in Korea, so all spent nuclear fuels are temporarily stored. However, the temporary storage facility is approaching saturation, and as a measure to this, the 2nd Basic Plan for the Management of High-Level Radioactive Waste presented an operation plan for dry interim storage facilities and dry temporary storage facilities on the NPP on-site. The dry storage can be operated in various ways, and to select the optimal dry storage method, the reduction of exposure for workers must be considered. Accordingly, it is necessary to develop a worker exposure scenario according to the dry storage method and evaluate and compare the radiological impact for each method. The purpose of this study is to develop an exposure scenario for workers transporting spent nuclear fuel by dry storage method. To this end, first, the operation procedure of the foreign commercial spent nuclear fuel dry storage system was analyzed based on the Final Safety Analysis Report (FSAR). 1) the concrete overpack-based system, 2) the metal overpack-based system, and 3) the vertical storage module-based system were selected for analysis. Factors were assumed that could affect the type of work (working distance, working hours, number of workers, etc.) during transportation work. Finally, the work type of the processes involved in transporting spent nuclear fuel by dry storage method was set, and an exposure scenario was developed accordingly. The concrete overpack method, the metal overpack method, and the vertical storage module method were classified into a total of 31, 9, and 23 processes, respectively. The work distance, work time, and number of workers for each process were set. The product of working hours and number of workers (Man-hour) was set high in the order of concrete overpack method, vertical storage module method, and metal overpack method, and short-range work (10 cm) was most often applied to the concrete overpack method. The results of this study are expected to be used as basic data for performing radiological comparisons of transport workers by dry storage method of spent nuclear fuel.

A Study of the Multi - Item Order - Level System with Storage Limitation by the Quadratic Programming (2차계획법을 이용(利用)한 비축면적(備蓄面積)의 제한(制限)을 받는 다품종주문량결정(多品種注文量決定) 시스템에 관(關)한 연구(硏究))

  • Gang, Dong-Jin;Lee, Sang-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.1
    • /
    • pp.11-19
    • /
    • 1985
  • This paper analyzes the multi-item order-level system with shortages allowance and storage limitation. Up to now, we have used the classical optimization theory to analyze this system. But the theory is generally not suitable for computational purposes. Therefore, this paper designes a new method to be able to apply the quadratic programming to the multi-item order-level system with storage limitation. A numerical example is also presented.

  • PDF

Evaluation of soft iterative decoder with run length limited code in optical storage system

  • 김기현;한성휴;심재성;박현수;박인식
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.99-102
    • /
    • 2002
  • In this work, we evaluated the performance of soft iterative decoder with soft block decoder in optical storage system. Because optical storage system requires run- length limited code in general, adaptation of the soft decoders such as turbo code or LDPC(low density parity check code) is difficult without soft block decoders. The performance of the overall optical detection system is evaluated and the simplified channel detection is also proposed.

  • PDF

Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink (MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계)

  • Gebreslassie, Maru Mihret;kim, Min;Byun, Gi-sig;Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

Modeling of a Compressed Air Energy Electrification by Using Induction Generator Based on Field Oriented Control Principle

  • Vongmanee, Varin;Monyakul, Veerapol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1511-1519
    • /
    • 2014
  • The objective of this paper is to propose a modelling of a small compressed air energy storage system, which drives an induction generator based on a field-oriented control (FOC) principle for a renewable power generation. The proposed system is a hybrid technology of energy storage and electrification, which is developed to use as a small scale of renewable energy power plant. The energy will be transferred from the renewable energy resource to the compressed air energy by reciprocating air compressor to be stored in a pressurized vessel. The energy storage system uses a small compressed air energy storage system, developed as a small unit and installed above ground to avoid site limitation as same as the conventional CAES does. Therefore, it is suitable to be placed at any location. The system is operated in low pressure not more than 15 bar, so, it easy to available component in country and inexpensive. The power generation uses a variable speed induction generator (IG). The relationship of pressure and air flow of the compressed air, which varies continuously during the discharge of compressed air to drive the generator, is considered as a control command. As a result, the generator generates power in wide speed range. Unlike the conventional CAES that used gas turbine, this system does not have any combustion units. Thus, the system does not burn fuel and exhaust pollution. This paper expresses the modelling, thermodynamic analysis simulation and experiment to obtain the characteristic and performance of a new concept of a small compressed air energy storage power plant, which can be helpful in system designing of renewable energy electrification. The system was tested under a range of expansion pressure ratios in order to determine its characteristics and performance. The efficiency of expansion air of 49.34% is calculated, while the efficiency of generator of 60.85% is examined. The overall efficiency of system of approximately 30% is also investigated.

Evaluation of Structural Safety and Leak Test for Hydrogen Fuel Cell-Based Truck Storage Systems (수소트럭 수소저장시스템에 대한 구조안전성 및 기밀성능평가)

  • Kim, Da-Eun;Yeom, Ji-Woong;Choi, Sung-Joon;Kim, Young-Kyu;Cho, Sung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.1-7
    • /
    • 2020
  • Recently, hydrogen has gained considerable attention as an eco-friendly fuel, which helps in reducing carbon dioxide content. Specifically, there is a growing interest in vehicles powered by a hydrogen fuel cell, which is spotlighted as an environmental-friendly alternative. A hydrogen transport system, fuel cell system, fuel supply system, power management system, and hydrogen storage system are key parts of a hydrogen fuel cell truck. In this study, a hydrogen storage system is built and analyzed. The expansion length of the storage vessel at maximum operating pressure (87.5 MPa) was calculated with ABAQUS, and then the optimized system was designed and built. The leak and bubble tests were performed on the built storage system. The leakage of the system was measured to be under 5 cc/hr. Hence, it can be used as a research test for the safety evaluation of leading systems of hydrogen fuel-powered commercial vehicles.