• Title/Summary/Keyword: Stokes

Search Result 2,861, Processing Time 0.027 seconds

RANS simulation of secondary flows in a low pressure turbine cascade: Influence of inlet boundary layer profile

  • Michele, Errante;Andrea, Ferrero;Francesco, Larocca
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.415-431
    • /
    • 2022
  • Secondary flows have a huge impact on losses generation in modern low pressure gas turbines (LPTs). At design point, the interaction of the blade profile with the end-wall boundary layer is responsible for up to 40% of total losses. Therefore, predicting accurately the end-wall flow field in a LPT is extremely important in the industrial design phase. Since the inlet boundary layer profile is one of the factors which most affects the evolution of secondary flows, the first main objective of the present work is to investigate the impact of two different inlet conditions on the end-wall flow field of the T106A, a well known LPT cascade. The first condition, labeled in the paper as C1, is represented by uniform conditions at the inlet plane and the second, C2, by a flow characterized by a defined inlet boundary layer profile. The code used for the simulations is based on the Discontinuous Galerkin (DG) formulation and solves the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Spalart Allmaras turbulence model. Secondly, this work aims at estimating the influence of viscosity and turbulence on the T106A end-wall flow field. In order to do so, RANS results are compared with those obtained from an inviscid simulation with a prescribed inlet total pressure profile, which mimics a boundary layer. A comparison between C1 and C2 results highlights an influence of secondary flows on the flow field up to a significant distance from the end-wall. In particular, the C2 end-wall flow field appears to be characterized by greater over turning and under turning angles and higher total pressure losses. Furthermore, the C2 simulated flow field shows good agreement with experimental and numerical data available in literature. The C2 and inviscid Euler computed flow fields, although globally comparable, present evident differences. The cascade passage simulated with inviscid flow is mainly dominated by a single large and homogeneous vortex structure, less stretched in the spanwise direction and closer to the end-wall than vortical structures computed by compressible flow simulation. It is reasonable, then, asserting that for the chosen test case a great part of the secondary flows details is strongly dependent on viscous phenomena and turbulence.

Suspension of Sediment over Swash Zone (Swash대역에서의 해빈표사 부유거동에 관한 연구)

  • Cho, Yong Jun;Kim, Kwon Soo;Ryu, Ha Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.95-109
    • /
    • 2008
  • We numerically analyzed the nonlinear shoaling, a plunging breaker and its accompanying energetic suspension of sediment at a bed, and a redistribution of suspended sediments by a down rush of preceding waves and the following plunger using SPH with a Gaussian kernel function, Lagrangian Dynamic Smagorinsky model (LDS), Van Rijn's pick up function. In that process, we came to the conclusion that the conventional model for the tractive force at a bottom like a quadratic law can not accurately describe the rapidly accelerating flow over a swash zone, and propose new methodology to accurately estimate the bottom tractive force. Using newly proposed wave model in this study, we can successfully duplicate severely deformed water surface profile, free falling water particles, a queuing splash after the landing of water particles on the free surface and a wave finger due to the structured vortex on a rear side of wave crest (Narayanaswamy and Dalrymple, 2002), a circulation of suspended sediments over a swash zone, net transfer of sediments clouds suspended over a swash zone toward the offshore, which so far have been regarded very difficult features to mimic in the computational fluid mechanics.

Numerical Simulations of Cellular Secondary Currents in Open-Channel Flows using Non-linear k-ε Model (비선형 k-ε 모형을 이용한 개수로 흐름에서의 격자형 이차흐름 구조 수치모의)

  • Kang, Hyeongsik;Choi, Sung-Uk;Park, Moonhyeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.643-651
    • /
    • 2008
  • In the present paper, turbulent open-channel flows over longitudinal bedforms are numerically simulated. The Reynolds- averaged Navier-Stokes equations in curvilinear coordinates are solved with the non-linear $k-{\varepsilon}$ model by Speziale( 1987). First, the developed model is applied to rectangular open channel flows for purposes of model validation and parameter sensitivity studies. It is found that the parameters $C_D$ and $C_E$ are important to the intensity of secondary currents and the level of turbulent anisotropy, respectively. It is found that the non-linear $k-{\varepsilon}$ model can hardly reproduce the turbulence anisotropy near the free surface. However, the overall pattern of the secondary currents by the present model is seen to coincide with measured data. Then, numerical simulations of turbulent flows over longitudinal bedforms are performed, and the simulated results are compared with the experimental data in the literature. The simulated secondary currents clearly show upflows and downflows over the ridges and troughs, respectively. The numerical results of secondary currents, streamwise mean velocity, and turbulence structures compare favorably with the measured data. However, it is observed that the secondary currents towards the troughs were significantly weak compared with the measured data.

Three-Dimensional Numerical Simulations of Open-Channel Flows with Alternate Vegetated Zones (교행식생 영역을 갖는 개수로 흐름에서의 3차원 수치모의)

  • Kang, Hyeongsik;Kim, Kyu-Ho;Im, Dongkyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.247-257
    • /
    • 2009
  • In the present paper, turbulent open-channel flows with alternate vegetated zones are numerically simulated using threedimensional model. The Reynolds-averaged Navier-Stokes Equations are solved with the ${\kappa}-{\varepsilon}$ model. The CFD code developed by Olsen(2004) is used for the present study. For model validation, the partly vegetated channel flows are simulated, and the computed depth-averaged mean velocity and Reynolds stress are compared with measured data in the literature. Comparisons reveal that the present model successfully predicts the mean flow and turbulent structures in vegetated open-channel. However, it is found that the ${\kappa}-{\varepsilon}$ model cannot accurately predict the momentum transfer at the interface between the vegetated zone and the non-vegetated zone. It is because the ${\kappa}-{\varepsilon}$ model is the isotropic turbulence model. Next, the open channel flows with alternate vegetated zones are simulated. The computed mean velocities are compared well with the previously reported measured data. Good agreement between the simulated results and the experimental data was found. Also, the turbulent flows are computed for different densities of vegetation. It is found that the vegetation curves the flow and the meandering flow pattern becomes more obvious with increasing vegetation density. When the vegetation density is 9.97%, the recirculation flows occur at the locations opposite to the vegetation zones. The impacts of vegetation on the flow velocity and the water surface elevation are also investigated.

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.

A Study on the Shape and Movement in Dissolved Air Flotation for the Algae Removal (수중조류제거(水中藻類除去)를 위한 가압부상(加壓浮上)에 있어서 기포(氣泡)의 양태(模態)에 관한 연구(研究))

  • Kim, Hwan Gi;Jeong, Tae Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.79-93
    • /
    • 1984
  • The dissolved air flotation(DAF) has been shown to be efficient process for the removal of algae ftom water. The efficiency of DAF can be affected by the volume ratio of pressurized liquid to sample, the pressure pressurized liquid, the contact time, the appropriate coagulant and its amount, the water temperature, the turbulence of reactor, the bubble size and rising velocity etc. The purpose of this paper is to compare the practical bubble rising velocity with the theoretical one, to investigate the adhesion phenomenon of bubbles and floc, and the influence of bubble size and velocity upon the process. The results through theoretical review and experimental investigation are as follows: Ives' equation is more suitable than Stokes' equation in computation of the bubble rising velocity. The collection of bubble and algae floc is convective collection type and resulted from absorption than adhesion or collision. The treatment efficiency is excellent when the bubble sizes are smaller than $l00{\mu}m$, and the turbulence of reactor is small. In the optimum condition of continuous type DAF the volume ratio of pressurized liquid to sample is 15%, the contact time in reactor is 15 minutes, the pressure of pressurized liquid is $4kg/cm^2$ and the distance from jet needle to inlet is 30cm.

  • PDF

Changes in the Stability Properties of Methylcellulose Emulsions as Affected by Competitive Adsorption Between Methylcellulose and Tween 20 (메칠셀룰로오스/Tween 20 경쟁 흡착이 메칠셀룰로오스 유화액의 안정도 특성에 미치는 영향)

  • Hong, Soon-Taek
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1278-1286
    • /
    • 2008
  • The effect of Tween 20 addition on changes in the stability of methylcellulose (MC) emulsions (1 wt% MC, 10 wt% n-tetradecane, 20 mM bis-tris buffer, pH 7) was investigated by creaming stability and orthokinetic stability measurements. In the case of MC emulsions containing varying amounts of oil (1$\sim$30 wt%) and no Tween 20 added, creaming stability, judged by mean migration velocity of fat globules ($V_m$), was found to depend on droplet size: the larger the droplet size, the worse the stability [$V_m$: 0.326 $\mu$m $min^{-1}$ ($d_{32}$: 0.32 $\mu$m) ${\rightarrow}V_m$: 0.551 $\mu$m $min^{-1}$ ($d_{32}$: 0.53 $\mu$m)]. With Tween 20, creaming stability was found to be worse than the one without Tween 20, except for MC emulsion containing 0.2 wt% Tween 20. In addition, cream stability was the lowest with the lowest concentration of Tween 20 and a tendency to recover with increasing Tween 20 concentration [$V_m$: 0.598 $\mu$m $min^{-1}$ (0.01 wt%)${\rightarrow}V_m$: 0.389 $\mu$m $min^{-1}$ (0.2 wt%)] was found. From viscosity measurement for aqueous bulk phase of MC emulsions, such a change in the creaming stability was found to coincide well with the results of viscosity measurement. Therefore, it was reasonable to say that creaming stability of MC emulsions containing Tween 20 depended on MC concentration in aqueous bulk phase, which was in turn varied by competitive adsorption between MC and Tween 20 at the oil droplet surface. In case of orthokinetic stability, judged by destabilization time ($t_d$), it was found that the addition of Tween 20 resulted in lowered stability with more pronounce tendency at higher concentrations [$t_d$: 160 min (0.03 wt%)${\rightarrow}t_d$: 100 min (0.2 wt%)]. Moreover, combined with previous results, the orthokinetic stability of MC emulsions containing Tween 20 was found to be exponentially proportional to MC load. In conclusion, competitive adsorption between MC and Tween 20 may affect the stability properties of MC emulsion to varying extents, depending on the concentration of Tween 20.

The Cross-sectional Mass Flux Observation at Yeomha Channel, Gyeonggi Bay at Spring Tide During Dry and Flood Season (단면 관측을 통한 경기만 염하수로의 대조기 평수시와 홍수시 유출입량 변화특성 조사)

  • Lee, Dong-Hwan;Yoon, Byung-Il;Kim, Jong-Wook;Gu, Bon-Ho;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.16-25
    • /
    • 2012
  • To calculate the total mass flux that change in dry and flood season in the Yeomha Channel of Gyeonggi Bay, the 13 hour bottom tracking observation was performed from the southern extremity. The value of the total mass flux(Lagrange flux) was calculated as the sum of the Eulerian flux value and stroke drift value and the tidal residual flow was harmonically analyzed through the least-squares method. Moreover, the average during the tidal cycle is essential to calculate the mass flux and the tidal residual flow and there is the need to equate the grid of repeatedly observed data. Nevertheless, due to the great differences in the studied region, the number of vertical grid tends to change according to time and since the horizontal grid differs according to the transport speed of the ship as a characteristic of the bottom tracking observation, differences occur in the horizontal and vertical grid for each hour. Hence, the present study has vertically and horizontally normalized(sigma coordinate) to equate the grid per each hour. When compared to the z-level coordinate system, the Sigma coordinate system was evaluated to have no irrationalities in data analysis with 5% of error. As a result of the analysis, the tidal residual flow displayed the flow pattern of sagging in the both ends in the main waterway direction of dry season. During flood season, it was confirmed that the tidal residual flow was vertical 2-layer flow. As a result of the total mass flux, the ebb properties of 359 cm/s and 261 cm/s were observed during dry and flood season, respectively. The total mass flux was moving the intertidal region between Youngjong-do and Ganghwa-do.

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

Improvement of Lacquer Collection Method by CEPA Application in Lactree(Rhus verniciflua Stokes) (CEPA 처리(處理)에 의한 옻나무 칠액(漆液) 채취법(採取法) 개량(改良)에 관(關)한 연구(硏究))

  • Choi, Tae Bong;Hyun, Jung Oh;Kim, Mahn Jo;Na, Chun Su;Kim, Gab Tae;Lee, Jae Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.2
    • /
    • pp.208-215
    • /
    • 2000
  • In order to improve 'Salso' method (conventional tapping method) which was very inefficient in the aspects of collection time and labor, this study was carried out to investigate the effect of the application date and the distance from treatment point in the lactree(Rhus verniciflua) treated with 10% CEPA and to decide the possibility of application of the technique in the field. Bark thickness was significantly increased to the part 40cm above and below the treatment point, but urushiol content was increased to the part 20cm above and 10cm below the zone treated with 10% CEPA. The urushiol content of the bark was highest at 5cm above the treated zone and decreased in the order of 10, 20, and 40cm. And the urushiol contents of the bark of the upper part were higher than that of the low part. The effects of CEPA on bark thickness were similar to urushiol contents. Urushiol production of lactree is highly dependent on climatic conditions and particularly on the precipitation, and duration of sunshine. Ten percent of CEPA-lanolin pastes which was treated on June 16 affected bark anatomy and urushiol contents, while the treatment on August 24 did not affect. In the Rhus verniciflua treated with 10% CEPA, the urushiol contents was initially increased from 7 days after treatment, continued for the 4 weeks, and then slight decrease occurred at 5 weeks after the treatment. We measured a total sap yield by Salso method in lactree treated with 10% CEPA. By applying 10% CEPA, the sap yield was increased 3-4 times compared to that of untreated trees in the first tapping. But the relative ratio was gradually decreased from the second tapping to sixth, and after seventh tapping, the untreated trees secreted more sap than the treated trees. We discussed about the causes.

  • PDF