• Title/Summary/Keyword: Stoichiometric model

Search Result 95, Processing Time 0.021 seconds

Marked Difference in Solvation Effects and Mechanism between Solvolyses of Substituted Acetylchloride with Alkyl Groups and with Aromatic Rigns in Aqueous Fluorinated Alcohol and in 2,2,2-Trifluoroethanol-Ethanol Solvent Systems

  • Oh, Yung-Hee;Jang, Gyeong-Gu;Lim, Gyi-Taek;Ryu, Zoon-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1089-1096
    • /
    • 2002
  • Solvolyses rate constants of trimethylacetyl chloride (2), isobutyryl chloride (3), diphenylacetyl chloride (4) and p-methoxyphenylacetyl chloride (5) in 2,2,2-trifluoroethanol (TFE)-water, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-water and TFE-et hanol solvent systems at $10^{\circ}C$ are determined by a conductimetric method. Kinetic solvent isotope effects (KSIE) are reported from additional kinetic data for methanolyses of various substituted acetylchlorides in methanol According to the results of those reactions analyzed in terms of rate-rate profiles,extended Grunwald-Winstein type correlations, application of a third order reaction model based a general base catalyzed (GBC) and KSIE values. Regardless of the kind of neighboring groups (CH3- or Ph-groups) of reaction center, for aqueous fluorinated alcohol systems, solvolyses of 2, 3, 4, and 5 were exposed to the reaction with the same mechanism (a loose SN2 type mechanism by electrophilic solvation) controlled by a similarity of solvation of the transition sate (TS). Whereas, for TFE-ethanol solvent systems, the reactivity depended on whether substituted acetyl chloride have aromatic rings (Ph-) or alkyl groups (CH3-); the solvations by the predominant stoichiometric effect (third order reaction mechanism by GBC and/or by push-pull type) for Ph- groups (4 and 5) and the same solvation effects as those shown in TFE-water solvent systems for CH3- groups (2 and 3) were exhibited Such phenomena can be interpreted as having relevance to the inductive effect ( $\sigmaI)$ of substituted groups; the plot of log (KSIE) vs. ${\sigma}I$ parameter give an acceptable the linear correlation with r = 0.970 (slope = 0.44 $\pm$ 0.06, n = 5).

Caspase-3-facilitated Stoichiometric Cleavage of a Large Recombinant Polyprotein (카스파제-3 효소를 이용한 폴리-단백질의 정량적 프로세싱 분석)

  • Kim, Moonil
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.385-389
    • /
    • 2015
  • In this study, it is reported that a large polyprotein can be stoichiometrically cleaved by the use of caspase-3-dependent proteolysis. Previously, it has been shown that the proteolytic IETD motif was partially processed when treated with caspase-3, while the DEVD motif was completely cleaved. The cleavage efficiency of the DEVD-based substrate was approximately 2.0 times higher than that of the IETD substrate, in response to caspase-3. Based on this, 3 protein genes of interest were genetically linked to each other by adding two proteolytic cleavage sequences, DEVD and IETD, for caspase-3. Particularly, glutathione-S transferase (GST), maltose binding protein (MBP), and red fluorescent protein (RFP) were chosen as model proteins due to the variation in their size. The expressed polyprotein was purified by immobilized metal ion affinity chromatography (IMAC) via a hexa-histidine tag at the C-terminal end, showing 93 kDa of a chimeric GST:MBP:RFP fusion protein. In response to caspase-3, cleavage products, such as MBP:RFP (68 kDa), MBP (42 kDa), RFP (26 kDa), and GST (25 kDa), were separated from a large precursor GST:MBP:RFP (93 kDa) via SDS-PAGE. The results obtained from this study indicate that a multi-protein can be stoichiometrically produced from a large poly-protein by using proteolytic recognition motifs, such as DEVD and IETD tetra-peptides, for caspase-3.

PILOT INJECTION OF DME FOR IGNITION OF NATURAL GAS AT DUAL FUEL ENGINE-LIKE CONDITIONS

  • MORSY M. H.;AHN D. H.;CHUNG S. H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The ignition delay of a dual fuel system has been numerically investigated by adopting a constant volume chamber as a model problem simulating diesel engine relevant conditions. A detailed chemical kinetic mechanism, consisting of 28 species and 135 elementary reactions, of dimethyl ether (DME) with methane ($CH_{4}$) sub-mechanism has been used in conjunction with the multi-dimensional reactive flow KIVA-3V code to simulate the autoignition process. The start of ignition was defined as the moment when the maximum temperature in the combustion vessel reached to 1900 K with which a best agreement with existing experiment was achieved. Ignition delays of liquid DME injected into air at various high pressures and temperatures compared well with the existing experimental results in a combustion bomb. When a small quantity of liquid DME was injected into premixtures of $CH_{4}$/air, the ignition delay times of the dual fuel system are longer than that observed with DME only, especially at higher initial temperatures. The variation in the ignition delay between DME only and dual fuel case tend to be constant for lower initial temperatures. It was also found that the predicted values of the ignition delay in dual fuel operation are dependent on the concentration of the gaseous $CH_{4}$ in the chamber charge and less dependent on the injected mass of DME. Temperature and equivalence ratio contours of the combustion process showed that the ignition commonly starts in the boundary at which near stoichiometric mixtures could exists. Parametric studies are also conducted to show the effect of additive such as hydrogen peroxide in the ignition delay. Apart from accurate predictions of ignition delay, the coupling between multi-dimensional flow and multi-step chemistry is essential to reveal detailed features of the ignition process.

Prediction of Maximum Yields of Metabolites and Optimal Pathways for Their Production by Metabolic Flux Analysis

  • Hong, Soon-Ho;Moon, Soo-Yun;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.571-577
    • /
    • 2003
  • The intracellular metabolic fluxes can be calculated by metabolic flux analysis, which uses a stoichiometric model for the intracellulal reactions along with mass balances around the intracellular metabolites. In this study, metabolic flux analyses were carried out to estimate flux distributions for the maximum in silico yields of various metabolites in Escherichia coli. The maximum in silico yields of acetic acid and lactic acid were identical to their theoretical yields. On the other hand, the in silico yields of succinic acid and ethanol were only 83% and 6.5% of their theoretical yields, respectively. The lower in silico yield of succinic acid was found to be due to the insufficient reducing power. but this lower yield could be increased to its theoretical yield by supplying more reducing power. The maximum theoretical yield of ethanol could be achieved, when a reaction catalyzed by pyruvate decarboxylase was added in the metabolic network. Futhermore, optimal metabolic pathways for the production of various metabolites could be proposed, based on the results of metabolic flux analyses. In the case of succinic acid production, it was found that the pyruvate carboxylation pathway should be used for its optimal production in E. coli rather than the phosphoenolpyruvate carboxylation pathway.

Growth and Photocurrent Study on the Splitting of the Valence Band for $CuInSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Walll Epitaxy (HWE)법에 의한 $CuInSe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Yun, Seok-Jin;Hong, Gwang-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.234-238
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuInSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62{\times}10^{l6}\;cm^{-3}$ and $296\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;1.1851\;eV\;-\;(8.99{\times}10^{-4}\;eV/K)T^2/(T+153K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CuInSe_2$ have been estimated to be 0.0087 eV and 0.2329 eV at 10K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}_{so}$ definitely exists in the $\Gamma_6$ states of the valence band of the $CuInSe_2$. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Adsorption of Trace Metals on the Natural Amorphous Iron Oxyhydroxide from the Taebag Coal Mine Area (태백 탄전 지대의 비정질 철 수산화물에 대한 희귀원소의 흡착)

  • Yu, Jae-Young;Park, In-Kyu
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 1994
  • To determine the apparent equilibrium constants, K$_{ad,app}$, for the adsorption reactions of trace metals on amorphous iron oxyhydroxide (AIO) in the Taebag coal mine area, time-adsorption and pH-adsorption experiments were performed for a selected bottom sediment mainly comprised of AIO from the study area. The results from the adsorption experiments indicate that most of the trace metals, except Pb, achieve equilibrium states with AIO and thus, the calculated K$_{ad,app}$ may represent the true apparent equilibrium constants. K$_{ad,app}$ and the stoichiometric coefficients of proton, x, of the adsorption reactions between the trace metals and AIO were respectively calculated from the intercepts and slopes of the regression lines of log($\Gamma$/ [M]$_{aq}$)against pH provided by pH-adsorption experiments. The calculated K$_{ad,app}$ this study has the values of the range from 10$^{-4.5}$ to 10$^{2.75}$ , which is much different from the reported values by other investigators for simple experimental systems. K$_{ad,app}$ of this study is more or less close but not exactly pertinent to the estimated values for the other natural systems. It indicates that K$_{ad,app}$ for the adsorption reactions in the aquatic system in the study area is unique and thus should be determined befor the adsorption modelling. The calculated x of this study has the values of the range from -0.3 to 0.7, which is also much different from what most geochemists generally accept. The discrepancy in x may be due to the competition among different kinds of ionic species on the adsorption site or simulataneous occurrence of different kinds of adsorption reactions. The results from this study should help construct an appropriate adsorption model for the aquatic systems polluted by the coal mine drainage in the Taebag area. With the constructed model, one can describe the concentration variations of trace metals due to the adsorption in the system, which is an essential part of the investigation on the water quality affected by coal mine drainage in the Taebag coal field.

  • PDF

Growth and optical conductivity properties for BaIn2S4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 BaIn2S4 단결정 박막 성장과 광전도 특성)

  • Jeong, Kyunga;Hong, Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.173-181
    • /
    • 2015
  • A stoichiometric mixture of evaporating materials for $BaIn_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaIn_2S_4$ single crystal thin films measured from Hall effect by van der Pauw method are $6.13{\times}10^{17}cm^{-3}$ and $222cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.0581eV-(3.9511{\times}10^{-3}eV/K)T^2/(T+536K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaIn_2S_4$ have been estimated to be 182.7 meV and 42.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaIn_2S_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{24}$-exciton peaks for n = 24.

The Froude Scaling Study on the Ventilation of Non-isothermal Concentrated Fume from the Semi-closed Space (반밀폐형 공간에서 비등온 고농도 연무의 배연산출량 산정을 위한 Froude 상사연구)

  • Chang, Hyuk-Sang;Choi, Byung-Il;Park, Jae-Cheul;Kim, Myung-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.877-885
    • /
    • 2005
  • The Froude scaling between the prototype and the model was tried to estimate the necessary ventilation rate for non-isothermal concentrated fume from the semi-closed inner space. Based on the non-dimensional similitude equations derived from the Zukoski plume rise analysis, the scaling experiments were done to verify the relationship of the non-dimensional energy release rate and the non-dimensional mass flow rate by using two different scaled volume models, model A ($1\;m{\times}1\;m{\times}1\;m$) and model B ($0.5\;m{\times}0.5\;m{\times}0.5\;m$). The experimental results showed that the theoretical similitude between the models is acceptable for the prediction of ventilation rate of the concentrated fume. The maximum energy release rate used for the experiments was $20\;kW/m^3$. In the experimental range, the similitude between the energy release rate and the ventilation mass flow rate was well defined and the necessary ventilation rates were 20-30% higher than the stoichiometric ventilation mass flow rate. Based on results of current study, the design of the local air ventilation system can be improved by correcting the effects of buoyancy and diffusion of the non-isothermal concentrated fume.

Computational Fluid Dynamics(CFD) Simulation and in situ Experimental Validation for the Urea-Based Selective Non-Catalytic Reduction(SNCR) Process in a Municipal Incinerator (생활폐기물 소각장 2차 연소로에서 요소용액을 이용한 선택적무촉매환원 공정에 대한 전산유체역학 모사 및 현장 검증)

  • Kang, Tae-Ho;Nguyen, Thanh D.B.;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.630-638
    • /
    • 2009
  • A computational fluid dynamics(CFD) model is developed and validated with on-site experiments for a urea-based SNCR(selective non-catalytic reduction) process to reduce the nitrogen oxides($NO_x$) in a municipal incinerator. The three-dimensional turbulent reacting flow CFD model having a seven global reaction mechanism under the condition of low CO concentration and 12% excess air and droplet evaporation is used for fluid dynamics simulation of the SNCR process installed in the incinerator. In this SNCR process, urea solution and atomizing air were injected into the secondary combustor, using one front nozzle and two side nozzles. The exit temperature($980^{\circ}C$) of simulation has the same value as in situ experiment one. The $NO_x$ reduction efficiencies of 57% and 59% are obtained from the experiment and CFD simulation, respectively at NSR=1.8(normalized stoichiometric ratio) for the equal flow rate ratio from the three nozzles. It is observed in the CFD simulations with varying the flowrate ratio of the three nozzles that the injection of a two times larger front nozzle flowrate than the side nozzle flowrate produces 8% higher $NO_x$ reduction efficiency than the injection of the equal ratio flowrate in each nozzle.

Growth and Optical Properties of SnSe/BaF2 Single-Crystal Epilayers (SnSe/BaF2 단결정 박막의 성장과 광학적 특성)

  • Lee, II Hoon;Doo, Ha Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.209-215
    • /
    • 2002
  • This study investigated the crystal growth, crystalline structure and the basic optical properties of $SnSe/BaF_2$ epilayers. The SnSe epilayer was grown on $BaF_2$(111) insulating substrates using a hot wall epitaxy(HWE) technique. It was found from the analysis of X-ray diffraction patterns that $SnSe/BaF_2$ epilayer was growing to single crystal with orthorhombic structure oriented [111] along the growth direction. Using Rutherford back scattering(RBS), the atomic ratios of the SnSe was found to be stoichiometric, almost 50 : 50. The best values for the full width at half maximum (FWHM) of the DCXRD was 163 arcsec for SnSe epilarer. The epilayer-thickness dependence of the FWHM of the DCXRD shows that the quality of the $SnSe/BaF_2$ is as expected. The dielectric function ${\varepsilon}$(E) of a semiconductor is closely related to its electronic energy band structure and such relation can be drawn from features around the critical points in the optical spectra. The real and imaginary parts(${\varepsilon}_1$ and ${\varepsilon}_2$) of the dielectric function ${\varepsilon}$ of SnSe were measured. These data are analyzed using a theoretical model known as the model dielectric function(MDF). The optical constants related to dielectric function such as the complex refractive index(n*-n+ik), absorption coefficient (${\alpha}$) and normal- incidence reflectivity (R) are also presented for $SnSe/BaF_2$.

  • PDF