본고(本稿)에서는 물가변동(物價變動)의 구조(構造), 주요거시정책변수(主要巨視政策變數)의 변동이 물가에 미치는 영향 및 파급구조(波及構造) 등을 파악하고 물가안정을 위한 적절한 정책대응방안을 제시하기 위하여 물가모형(物價模型)을 작성하였다. Keynesian 거시경제모형(巨視經濟模型) 형태로 작성하되, 임금(賃金), 이자율(利子率), 물가(物價)와 같은 주요가격변수(主要價格變數)를 내생화(內生化)하고 잠재(潛在)GNP의 추정 역시 내생화(內生化)함으로써 가격 및 실물변수의 장기적(長期的) 상호변동관계(相互變動關係)를 파악하였다. 어떠한 충격에 의해 초과수요(超過需要)(실질GNP-잠재GNP)가 변화하면 이는 임금(賃金), 금리(金利), 물가(物價), 실질실효환율(實質實效換率) 등과 같은 가격변수에 영향을 미치고 이는 다시 초과수요(超過需要)를 변동시키는 실물(實物)-가격(價格)-실물(實物)의 순환변동관계(循環變動關係)에 의해 물가가 변동되는 것으로 나타났다. 본 모형(模型)은 Keynesian모형(模型)이나, 장기(長期)에는 고전파적(古典派的)(Classical) 정책함의를 가지는바, 통화공급증가(通貨供給增加), 재정지출증가(財政支出增加), 환율절하(換率切下) 등은 단기(短期)에는 경기부양효과를 가지나 장기(長期)에는 이러한 경기부양효과가 소멸되는 반면 물가(物價)는 높은 수준을 유지하는 결과를 초래하는 것으로 나타났다.
기업간전자상거래 거래액은 그룹(항목)별로 다양한 원인에 의해서 거래액 결정이 이루어지고 있어 복잡성을 띠고 있다. 본 연구에서는 복잡성을 띠고 있는 전자상거래 거래액의 제 변인들을 파악하기 위해 패널 데이터를 이용한 연구 모형을 설정하고 이를 통해 기업간전자상거래 거래액에 결정적으로 영향을 미치는 제 변인에 대하여 조사, 분석, 검증한다. 본 연구는 7 그룹(제조업, 전기 가스 수도업, 건설업, 도소매업, 운수업, 출판, 영상, 방송통신 및 정보서비스업, 기타)을 분석대상으로 하였다. 분석기간은 2005년 1월부터 2009년 12월까지의 자료를 이용하였고. 기업간전자상거래 거래액을 종속변수로 설정하고 사이버쇼핑몰 거래액, 회사채, 종합주가지수, 신용카드 거래액, 예금은행 대출금리, 환율을 독립변수로 투입하였다. 기업간전자상거래 거래액 요인을 추정한 결과 사이버 쇼핑몰 거래액, 종합주가지수, 그리고 예금은행 대출 금리와 환율은 각각 유의적인 정(+)의 영향을 미치는 것으로 나타나고 회사채는 음(-)의 영향을 나타내는 비유의적인 변수이고 신용카드거래액도 정(+)의 영향을 미치지만 기업 간 전자상거래 거래액에 큰 영향을 주지는 않은 것으로 나타났다.
본 연구는 글로벌 경제 시장에서 중국의 제조 기업들이 동적역량을 기반으로 어떠한 ESG 활동을 수행하고 있으며 그 활동에는 어떠한 차이가 있는가를 분석하였다. 상하이와 선전 증권 거래소 (Shanghai & Shenzhen Stock Exchange)에서 151개 중국 상장 제조 기업들의 ESG 연례 보고서와 상하이 화정 지표 정보 회사(CSI, China Securities Index Company)의 ESG 지표를 데이터로 사용하였다. 연구 분석에는 TensorFlow-BERT 모델과 코사인 유사도를 사용하여 환경, 사회, 지배구조로 구분된 ESG 키워드를 분류하였고 이를 기반으로 다음 세가지의 연구 질문을 구성하였다. 첫번째는 ESG 점수가 높은 기업(TOP-25)과 낮은 기업(BOT-25)을 구분하여 이 기업들 사이의 ESG 활동에는 어떠한 차이가 있는지를 확인하였으며, 두 번째는 ESG 점수가 높은 기업만을 중심으로 10년간(2010~2019년)의 ESG 활동에는 어떠한 변화가 있는지도 확인하였다. 그 결과 ESG 점수가 높은 기업과 낮은 기업간의 ESG 활동에는 유의한 차이를 보였으며, TOP-25기업의 연도별 활동 변화 추적에서는 ESG 활동의 모든 부분에서 차이를 보이지 않은 것으로 나타났다. 세번째 연구에서는 연도별로 작성된 각 항목별 E, S, G 키워드에 대하여 소셜 네트워크 분석을 진행하였다. 동시발생행렬(Co-occurance matrix) 기법을 통해 기업들의 ESG활동을 4사분면 그래프로 시각화하였으며 이를 바탕으로 ESG활동에 대한 향후 방향을 제시하였다.
산림의 수원함양기능 지표로서 표층토양에서의 조공극률(粗孔隙率)(pF2.7)에 영향하는 인자를 밝히기 위해 1993년 3월부터 10월까지 전국의 침엽수림 표본조사구를 대상으로 입지, 토양, 임분환경인자 등 총 23개 조사항목에 대하여 상관분석하였다. 표층토양에서의 조공극률에 영향을 미치는 유의한 인자는 표층토양에서의 조대공극률(粗大孔隙率)(pF1.6), 경사도, 상층식생 울폐도, F층의 두께, 토양의 유기물함량비, 임목축적 등 6개 인자가 정(定)의 상관관계를, 점토함량비, 표층토양의 견밀도, A층, B층 토양견밀도 등 4개 인자가 각각 5%, 1% 수준에서 유의한 부(負)의 상관관계를 나타내었다. 또한, stepwise를 이용한 다중회귀분석결과 표층토양에서의 조공극률에 영향하는 인자는 표층토양의 견밀도, 상층임분 지하고, 임목축적, B층 토양의 견밀도, 토양의 유기물함량비 등 5개 인자이었다. 침엽수림의 수원함양기능 증진을 위한 시업은 표층토양의 조공극 발달이 촉진되도록 상충식생 울폐도가 80%를 넘게 되었을 때 실시해야 할 것으로 판단된다.
최근 트레이딩 시스템에 대한 관심이 높아지면서, 인공지능을 이용한 지능형 트레이딩 시스템의 개발과 관련한 연구들이 활발하게 이루어지고 있다. 그러나 현재까지 소개된 트레이딩 시스템 관련 연구들은 트레이딩에 적용될 수 있는 다양한 변수들이 실무에서 활용되고 있음에도 불구하고, 주가지수에서 파생된 기술적 지표에만 과도하게 의존하는 경향이 있었다. 또한, 실제 수익창출에 초점이 맞추어진 트레이딩 시스템의 모형보다는 주가 혹은 주가지수의 등락에 대한 정확한 예측에 초점을 맞춰 모형을 개발하려고 하는 한계도 존재했다. 이에 본 연구에서는 기존 연구에서 주로 활용되어 온 기술적 지표 외에 현업에서 유용하게 활용되는 다양한 비가격 변수들을 시스템에 반영함으로서 예측 성과의 개선을 도모하는 동시에, Support Vector Machines 기반의 등락예측모형의 결과를 트레이딩 시스템의 매수, 매도, 혹은 유지의 신호로 해석할 수 있도록 설계된 새로운 형태의 지능형 트레이딩 시스템을 제안한다. 제안시스템의 유용성을 검증하기 위해, 본 연구에서는 2004년 5월부터 2009년 12월까지의 KOSPI200 주가지수에 제안모형을 적용하여 그 성과를 살펴보았다. 그 결과, 제안시스템이 수익률 관점에서 다른 비교모형들에 비해 더 우수한 성과를 도출함을 확인할 수 있었다.
This study was conducted to estimate carbon stocks of Quercus serrata with drawing volume of trees in each tree height and DBH applying the suitable stem taper equation and tree specific carbon emission factors, using collected growth data from all over the country. Information on distribution area, tree number per hectare, tree volume and volume stocks were obtained from the $5^{th}$ National Forest Inventory (2006~2010), and method provided in IPCC GPG was applied to estimate carbon storage and removals. Performance in predicting stem diameter at a specific point along a stem in Quercus serrata by applying Kozak's model,$d=a_1DBH^{a_2}a_3^{DBH}X^{b_1Z^2+b_2ln(Z+0.001)+b_3{\sqrt{Z}}+b_4e^Z+b_5({\frac{DBH}{H}})}$, which is well known equation in stem taper estimation, was evaluated with validations statistics, Fitness Index, Bias and Standard Error of Bias. Consequently, Kozak's model turned out to be suitable in all validations statistics. Stem volume tables of Quercus serrata were derived by applying Kozak's model and carbon stock tables in each tree height and DBH were developed with country-specific carbon emission factors ($WD=0.65t/m^3$, BEF=1.55, R=0.43) of Quercus serrata. As a result of carbon stock analysis by age class in Quercus serrata, carbon stocks of IV age class (11,358 ha, 36.5%) and V age class (10,432; 33.5%) which take up the largest area in distribution of age class were 957,000 tC and 1,312,000 tC. Total carbon stocks of Quercus serrata were 3,191,000 tC which is 3% compared with total percentage of broad-leaved forest and carbon sequestration per hectare(ha) was 3.8 tC/ha/yr, $13.9tCO_2/ha/yr$, respectively.
본 논문에서는 대용량 시퀀스 데이터베이스에 타임 워핑을 지원하는 인덱스 기반 서브시퀀스 매칭에 관하여 논의한다. 타임 워핑은 시퀀스의 길이가 서로 다른 경우에도 유사한 패턴을 갖는 시퀀스들을 찾을 수 있도록 해준다. 최근의 연구에서 타임 워핑을 지원하는 효과적인 전체 매칭 기법을 제안된바 있다. 이 기법은 데이터 시퀀스들로부터 타임 워핑에 영향을 받지 않는 특징 벡터들의 집합을 대상으로 인덱스를 구성한다. 또한, 특징 공간상에서의 필터링을 위하여 삼각형 부등식을 만족하는 타임 워핑 거리의 하한 함수를 사용한다. 본 연구에서는 이 기존의 연구에 슬라이딩 윈도우를 기반으로 하는 접두어-질의 방법을 결합하는 새로운 기법을 제안한다. 인덱싱을 위하여 각 슬라이딩 윈도우와 대응되는 서브 시퀀스로부터 특징 벡터를 추출하고, 이 특징 벡터를 인덱싱 애트리뷰트로 사용하는 다차원 인덱스를 구성한다. 질의 처리를 위하여, 조건을 만족하는 질의 접두어들에 대한 특징 벡터들을 이용하여 다수의 인덱스 검색을 수행한다. 제안된 기법은 대용량의 데이터베이스에서도 효과적인 서브시퀀스 매칭을 지원한다. 본 연구에서는 제안된 기법이 착오 기각을 유발시키지 않음을 증명한다. 제안된 기법의 우수성을 규명하기 위하여 다양한 실험을 수행한다. 실험 결과에 따르면, 제안된 기법은 실제 S&P 500 주식 데이터와 대용량의 생성 데이터 모두에 대하여 큰 성능 개선 효과를 보이는 것으로 나타났다.
정규화 변환은 시계열 시퀀스를 구성하는 엔트리들의 전체적인 패턴을 분석하는데 매우 유용하다. 본 논문에서는 단일 색인을 사용한 정규화 변환 지원 서브시퀀스 매칭 방법을 제안한다. 기존의 정규화 변환 지원 서브시퀀스 매칭 방법은 다양한 길이의 질의 시퀀스를 지원하기 위하여 여러 개의 색인을 생성해야 하고, 이에 따라 색인 저장 공간의 오버헤드와 색인 관리의 오버헤드가 발생한다. 본 논문에서는 하나의 색인을 사용하면서도 다양한 길이의 질의 시퀀스에 대한 정규화 변환을 지원하는 효율적인 서브시퀀스 매칭 방법을 제안한다. 이를 위하여, 우선 정규화 변환을 일반화한 포함-정규화 변환(inclusion-normalization transform) 개념을 제시한다. 포함 정규화 변환이란 색인에 저장할 윈도우에 대해서 해당 윈도우를 포함하는 서브시퀀스의 평균과 표준편차로 정규화하는 것으로서, 기본적인 정규화 변환을 윈도우 및 서브시퀀스 개념을 사용하여 확장한 것이다. 다음으로, 포함-정규화 변환을 기존 서브시퀀스 매칭 연구에 적용하기 위한 이론적 근거를 정리로서 제시하고 증명한다. 그리고, 이 방안을 구현하기 위한 색인 구성 알고리즘 및 서브시퀀스 매칭 알고리즘을 각각 제시한다. 실제 주식 데이터에 대한 실험 결과, 제안한 방법은 기존 방법에 비해 최대 $2.5{\sim}2.8$배까지 성능을 향상 시킨 것으로 나타났다. 본 논문에서 제안한 정규화 변환 지원 서브시퀀스 매칭은 정규화 변환 이외의 다른 변환을 지원하는 서브시퀀스 매칭으로 일반화 될 수 있다. 따라서, 제안한 방법은 정규화 변환을 포함하는 많은 다른 종류의 변환을 지원하는 서브시퀀스 매칭에 폭넓게 적용될 수 있는 좋은 연구결과라 사료된다.
일정 기간 동안 객체의 변화한 값들을 기록한 것을 그 객체에 대한 시계열 데이타 시퀀스라고 부르며, 이들의 집합을 시계열 데이타베이스라고 한다. 서브시퀀스 매칭은 주어진 질의 시퀀스와 변화의 추세가 유사한 서브시퀀스들을 시계열 데이타베이스로부터 검색하는 연산이다. 본 논문에서는 서브시퀀스 매칭의 성능을 극대화하기 위한 방안을 제시한다. 먼저, 윈도우 크기 효과로 인한 서브시퀀스 매칭의 심각한 성능 저하 현상을 정량적으로 관찰하여, 하나의 윈도우 크기를 대상으로 만든 단 하나의 인덱스만을 이용하는 것은 실제 응용에서 만족할만한 성능을 제공할 수 없다는 것을 규명하였다 또한, 이러한 문제로 인해 다양한 윈도우 크기들을 기반으로 다수의 인덱스들을 구성하여 서브시퀀스 매칭을 수행하는 인덱스 보간법의 응용이 필요함을 보였다. 인덱스 보간법을 응용하여 서브시퀀스 매칭을 수행하기 위해서는 먼저 다수의 인덱스들을 위한 윈도우 크기들을 결정해야 한다. 본 연구에서는 물리적 데이타베이스 설계 방식을 이용하여 이러한 최적의 다수의 윈도우 크기들을 선정하는 문제를 해결하였다. 이를 위하여 시계열 데이터 베이스에서 수행될 예정인 질의 시퀀스들의 집합과 인덱스 구성의 기반이 되는 윈도우들의 크기의 집합이 주어질 때, 전체 서브시퀀스 매칭들을 수행하는 데에 소요되는 비용을 예측할 수 있는 공식을 산출하였다. 또한, 이 비용 공식을 이용하여 전체 서브시퀀스 매칭들의 성능을 극대화 할 수 있는 최적의 윈도우 크기들을 결정하는 알고리즘을 제안하였으며, 이 알고리즘의 최적성과 효율성을 이론적으로 규명하였다. 끝으로, 실제 주식 데이타와 대량의 합성 데이타를 이용한 실험 결과, 제안된 기법은 기존의 단순한 기법과 비교하여 1.5배에서 7.8배 성능이 향상됨을 보였다.
한국 경제에서 창업·벤처기업의 중요성이 커지고 있다. 이 연구는 창업·벤처기업의 성장을 포함하여 창업·벤처 생태계가 성장하고 있는지 측정하였다. 창업·벤처 생태계는'생태계'의 주요 행위자인 창업·벤처기업, 투자기관, 정부로 구성하고, 이들의 주요 활동을 정량적 지표 25개로 측정하였다. 창업·벤처 생태계 지수는 25개 지표의 2010~2018년의 시계열 원자료를 토대로 종합주가지수 방식과 AHP를 통한 가중치를 적용하여 산출하였다. 2018년 창업·벤처 생태계는 2010년에 비해 2.1배 성장하였으며, 정부 지수의 증가가 성장에 큰 영향을 미쳤다. 2018년 각각의 지수를 구성하는 개별지표를 보면, 기업 지수는 천억 벤처기업의 수, 투자 지수는 회수금액, 정부 지수는 모태펀드 출자금액이 성장에 가장 큰 영향을 주었다. 원자료를 토대로 창업·벤처 생태계 지수를 생태계별(창업생태계와 벤처생태계), 업종별(전업종과 제조업), 지역별(전국과 부산)로 구분하여 분석하였다. 그 결과, 지난 8년간 창업생태계의 성장이 벤처생태계의 성장 보다 근소한 차이로 컸다. 제조업 창업·벤처 생태계는 전업종 보다 낮게 나타났으며, 예시로 살펴본 부산의 창업·벤처 생태계 지수는 전국 보다 낮게 나타났다. 이 연구는 창업·벤처 생태계 지수를 개발 및 측정하여 모니터링 함으로써 지원 정책의 수립 및 시행에 활용하고자 했다. 이 지수는 주요 행위자 간의 상호관계를 파악해 볼 수 있으며, 공식적인 통계조사 결과를 활용하여 누구라도 지수를 산출할 수 있는 장점이 있다. 향후에도 지수를 지속적으로 모니터링하여 경제사회적 사건이나 정책적 지원이 창업·벤처 생태계에 어떤 영향을 미쳤는지 파악할 필요가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.