• 제목/요약/키워드: Stock Price Prediction

검색결과 154건 처리시간 0.02초

변동성 돌파 전략을 사용한 S&P 500 지수의 자동 거래와 매수 및 보유 비교 연구 (Comparative Study of Automatic Trading and Buy-and-Hold in the S&P 500 Index Using a Volatility Breakout Strategy)

  • 홍성혁
    • 사물인터넷융복합논문지
    • /
    • 제9권6호
    • /
    • pp.57-62
    • /
    • 2023
  • 본 연구는 미국 S&P 500 지수를 변동성 돌파 전략을 활용하여 Buy and Hold 방식과 비교 분석한 연구이다. 변동성 돌파 전략은 시장의 상대적 안정 또는 집중된 시기 후의 가격 움직임을 활용하는 거래 전략이다. 특히, 낮은 변동성 기간 후에 큰 가격 움직임이 더 자주 발생한다는 것이 관찰된다. 주식이 한동안 좁은 가격 범위에서 움직이다가 가격이 갑작스레 상승 또는 하락하는 경우, 그 주식이 해당 방향으로 계속 움직일 것으로 예상된다. 이러한 움직임을 활용하기 위해 거래자들은 변동성 돌파 전략을 채택한다. 'k' 값은 최근 시장 변동성의 측정값에 곱하는 배수로서 활용된다. 변동성의 측정 방법 중 하나로는 최근 거래일의 최고가와 최저가 차이를 나타내는 평균 진정 범위(ATR)가 있다. 'k' 값은 거래자들이 거래 임계값을 설정하는 데 중요한 역할을 한다. 본 연구는 'k' 값을 일반적인 값으로 연산하여 Buy and Hold 전략과 수익률을 비교 하여, 변동성 돌파전략을 사용한 알고리즘 트레이딩이 약간은 높은 수익률을 이룩하였다. 추후에는 인공 지능 딥러닝 기법을 이용하여 S&P 500 지수의 자동 거래를 위한 최적의 K 값을 구하고, 이를 통해 수익률을 극대화하기 위한 시뮬레이션 결과를 제시할 예정이다.

PCA를 활용한 기업실적 예측변수 생성 (Generating Firm's Performance Indicators by Applying PCA)

  • 이준혁;김갑조;박상성;장동식
    • 한국지능시스템학회논문지
    • /
    • 제25권2호
    • /
    • pp.191-196
    • /
    • 2015
  • 최근 기업의 실적 및 주가를 예측하기 위해 매출액증가율, 부채비율 등의 다양한 예측변수를 활용하여 정량적인 예측방법을 활용하는 연구가 많이 이루어지고 있다. 기업실적 및 주가를 정량적 예측하기 위해 수많은 예측변수들 중에서 모델구축을 위해 중요한 예측변수를 선정하는 것이 중요하다. 대부분의 기존연구들에서는 다양한 알고리즘을 활용하여 예측변수들을 제거하는 방법을 사용하는 경우가 많았다. 이러한 경우 각 예측변수들이 가지는 많은 정보들이 제거되는 문제점이 존재한다. 이러한 문제점을 해결하기 위해 본 연구에서는 예측모델 구축을 위해 예측변수들을 제거하는 대신 각 변수들이 가지고 있는 정보를 병합하여 새로운 변수를 생성하는 대표적인 차원축소 방법인 주성분분석(PCA)을 활용하였다. 본 연구에서는 제안된 예측모델을 미국의 전자, 전기기업의 재무정보를 활용하여 구축하고 예측성능을 실증적으로 분석해 보았다.

A Study on the Improving Measures of Private Brand Clothing Products in Domestic Department Stores

  • Kim, Wan-Joo;Kim, Moon-Sook
    • The International Journal of Costume Culture
    • /
    • 제4권1호
    • /
    • pp.44-60
    • /
    • 2001
  • The purpose of this study is to present suggestions to improve the problems the domestic department stores face by analyzing and comparing the status of the development of PB which is absolutely critical for the specialized domestic department stores to survive, and to search for the future course which may lead to boosting sales and profit by developing the strategic PB products. Selected for this study were atotal of 20 PB's out of domestic as well s foreign PB's in the 4 big department stores. The data were analyzed with SAS package employed as per the by items frequency, percent, mean and standard deviation. From the above study, following viewpoints can be taken into account for the future development of PB ; First, the active will of the excutive is basically necessary for successful development of PB, by relying on long-term investment. Second, the existing mid or low-price goods should be in line with the mid or high price one's development for domestic merchandising with focus on middle or high class society. Third, the stock burden, biggest problem of PB, can be solved by discount policy at optimum prices and success rate of merchandising prediction.

  • PDF

심층 신경망을 이용한 변동성 돌파 전략 기반 주식 매매 방법에 관한 연구 (A Study on Stock Trading Method based on Volatility Breakout Strategy using a Deep Neural Network)

  • 이은우;이원부
    • 한국콘텐츠학회논문지
    • /
    • 제22권3호
    • /
    • pp.81-93
    • /
    • 2022
  • 주식 투자는 가장 널리 알려진 재테크 방법들 중 하나지만 실제 투자를 통해 수익을 얻기는 쉽지 않기 때문에 과거부터 효과적이고 안정적인 투자 수익을 얻기 위한 다양한 투자 전략들이 고안되고 시도되어 왔다. 그중 변동성 돌파 전략(Volatility Breakout)은 일일 단위로 일정 수준 이상의 범위를 뛰어넘는 강한 상승세를 돌파 신호로 파악하여 상승하는 추세를 따라가며 일 단위로 빠르게 수익을 실현하는 전략으로 널리 쓰이고 있는 단기 투자 전략들 중 하나이다. 그러나 주식 종목마다 가격의 추이나 변동성의 정도가 다르며 동일한 종목이라도 시기에 따라 주가의 흐름이 일정하지 않아 주가를 예측하고 정확한 매매 시점을 찾아내는 것은 매우 어려운 문제이다. 본 논문에서는 단순히 종가 또는 장기간에 걸친 수익률을 예측하는 기존 연구 방법들과는 달리 단기간에 수익을 실현할 수 있는 주식과 같은 시계열 데이터 분석에 적합한 양방향 장단기 메모리 심층 신경망을 이용하여 변동성 돌파 전략 기반 매매 시의 수익률을 예측하여 주식을 매매하여 방법을 제안한다. 이렇게 학습된 모델로 테스트 데이터에 대하여 실제 매매를 가정하여 실험한 결과 기존의 장단기 메모리 심층 신경망을 이용한 종가 예측 모델보다 수익률과 안정성을 모두 상회하는 결과를 확인할 수 있다.

강화학습을 이용한 트레이딩 전략 (Trading Strategies Using Reinforcement Learning)

  • 조현민;신현준
    • 한국산학기술학회논문지
    • /
    • 제22권1호
    • /
    • pp.123-130
    • /
    • 2021
  • 최근 컴퓨터 기술이 발전하면서 기계학습 분야에 관한 관심이 높아지고 있고 다양한 분야에 기계학습 이론을 적용하는 사례가 크게 증가하고 있다. 특히 금융 분야에서는 금융 상품의 미래 가치를 예측하는 것이 난제인데 80년대부터 지금까지 기술적 및 기본적 분석에 의존하고 있다. 기계학습을 이용한 미래 가치 예측 모형들은 다양한 잠재적 시장변수에 대응하기 위한 모형 설계가 무엇보다 중요하다. 따라서 본 논문은 기계학습의 하나인 강화학습 모형을 이용해 KOSPI 시장에 상장되어 있는 개별 종목들의 주가 움직임을 정량적으로 판단하여 이를 주식매매 전략에 적용한다. 강화학습 모형은 2013년 구글 딥마인드에서 제안한 DQN와 A2C 알고리즘을 이용하여 KOSPI에 상장된 14개 업종별 종목들의 과거 약 13년 동안의 시계열 주가에 기반한 데이터세트를 각각 입력 및 테스트 데이터로 사용한다. 데이터세트는 8개의 주가 관련 속성들과 시장을 대표하는 2개의 속성으로 구성하였고 취할 수 있는 행동은 매입, 매도, 유지 중 하나이다. 실험 결과 매매전략의 평균 연 환산수익률 측면에서 DQN과 A2C이 대안 알고리즘들보다 우수하였다.

The Hybrid Knowledge Integration Using the Fuzzy Genetic Algorithm

  • Kim, Myoung-Jong;Ingoo Han;Lee, Kun-Chang
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.145-154
    • /
    • 1999
  • An intelligent system embedded with multiple sources of knowledge may provide more robust intelligence with highly ill structured problems than the system with a single source of knowledge. This paper proposes the hybrid knowledge integration mechanism that yields the cooperated knowledge by integrating expert, user, and machine knowledge within the fuzzy logic-driven framework, and then refines it with a genetic algorithm (GA) to enhance the reasoning performance. The proposed knowledge integration mechanism is applied for the prediction of Korea stock price index (KOSPI). Empirical results show that the proposed mechanism can make an intelligent system with the more adaptable and robust intelligence.

  • PDF

The Hybrid Knowledge Integration Using the Fuzzy Genetic Algorithm

  • Kim, Myoung-Jong;Ingoo Han;Lee, Kun-Chang
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.145-154
    • /
    • 1999
  • An intelligent system embedded with multiple sources of knowledge may provide more robust intelligence with highly ill structured problems than the system with a single source of knowledge. This paper proposes th hybrid knowledge integration mechanism that yields the cooperated knowledge by integrating expert, user, and machine knowledge within the fuzzy logic-driven framework, and then refines it with a genetic algorithm (GA) to enhance the reasoning performance. The proposed knowledge integration mechanism is applied for the prediction of Korea stock price index (KOSPI). Empirical results show that the proposed mechanism can make an intelligent system with the more adaptable and robust intelligence.

  • PDF

정량 추론과 정성 추론의 통합 메카니즘 : 주가예측의 적용 (A Mechanism for Combining Quantitative and Qualitative Reasoning)

  • 김명종
    • 지식경영연구
    • /
    • 제10권2호
    • /
    • pp.35-48
    • /
    • 2009
  • The paper proposes a quantitative causal ordering map (QCOM) to combine qualitative and quantitative methods in a framework. The procedures for developing QCOM consist of three phases. The first phase is to collect partially known causal dependencies from experts and to convert them into relations and causal nodes of a model graph. The second phase is to find the global causal structure by tracing causality among relation and causal nodes and to represent it in causal ordering graph with signed coefficient. Causal ordering graph is converted into QCOM by assigning regression coefficient estimated from path analysis in the third phase. Experiments with the prediction model of Korea stock price show results as following; First, the QCOM can support the design of qualitative and quantitative model by finding the global causal structure from partially known causal dependencies. Second, the QCOM can be used as an integration tool of qualitative and quantitative model to offerhigher explanatory capability and quantitative measurability. The QCOM with static and dynamic analysis is applied to investigate the changes in factors involved in the model at present as well discrete times in the future.

  • PDF

Long-Term Forecasting by Wavelet-Based Filter Bank Selections and Its Application

  • Lee, Jeong-Ran;Lee, You-Lim;Oh, Hee-Seok
    • 응용통계연구
    • /
    • 제23권2호
    • /
    • pp.249-261
    • /
    • 2010
  • Long-term forecasting of seasonal time series is critical in many applications such as planning business strategies and resolving possible problems of a business company. Unlike the traditional approach that depends solely on dynamic models, Li and Hinich (2002) introduced a combination of stochastic dynamic modeling with filter bank approach for forecasting seasonal patterns using highly coherent(High-C) waveforms. We modify the filter selection and forecasting procedure on wavelet domain to be more feasible and compare the resulting predictor with one that obtained from the wavelet variance estimation method. An improvement over other seasonal pattern extraction and forecasting methods based on such as wavelet scalogram, Holt-Winters, and seasonal autoregressive integrated moving average(SARIMA) is shown in terms of the prediction error. The performance of the proposed method is illustrated by a simulation study and an application to the real stock price data.

역전파 신경망을 이용한 주가 예측 (Stock Price Prediction Using Backpropagation Neural Network)

  • 박사준;이상훈;고삼일;김기태
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.328-330
    • /
    • 2002
  • 본 논문에서는 역전파 신경망(Backpropagation Neural Network)을 시계열 데이터인 주가 데이터를 이용한 주가 예측의 정확도를 향상시키기 위한 학습 방법으로 적용하였다. 실제 증권거래소의 종목 데이터에서 비교적 등락폭이 안정적인 각 산업분야별 5개 기업의 5일 이동평균선 데이터 240개를 훈련 데이터로, 20개는 테스트 데이터로 이용하였다. 선정된 입력 데이터를 은닉층의 개수와 은닉 노드의 개수 등을 달리 하면서 10,000번의 훈련을 통해서 실험 하였으며, 그 결과 1개의 은닉층을 사용한 네트워크1은 20개의 테스트 데이터 사이의 19개의 신호 중 14개를 예측하였고, 2개의 은닉층을 사용한 네트워크 2는 16개를 예측하였다. 시험 결과를 통해서 보듯이 은닉층을 2개 사용하였을 때 보다 좋은 실험 결과를 얻을 수 있었으며, 역전파 신경망 모델이 주가 예측에 적합하다는 것이 증명되었다.

  • PDF