• Title/Summary/Keyword: Stock Price Data

Search Result 397, Processing Time 0.023 seconds

A Study on the Dynamic Correlation between the Korean ETS Market, Energy Market and Stock Market (한국 ETS시장, 에너지시장 및 주식시장 간의 동태적 상관관계에 관한 연구)

  • Guo-Dong Yang;Yin-Hua Li
    • Korea Trade Review
    • /
    • v.48 no.4
    • /
    • pp.189-208
    • /
    • 2023
  • This paper analyzed the dynamic conditional correlation between the Korean ETS market, energy market and stock market. This paper conducted an empirical analysis using daily data of Korea's carbon credit trading price, WTI crude oil futures price, and KOSPI index from February 2, 2015 to December 30, 2021. First, the volatility of the three markets was analyzed using the GARCH model, and then the dynamic conditional correlations between the three markets were studied using the bivariate DCC-GARCH model. The research results are as follows. First, it was found that the Korean ETS market has a higher rate of return and higher investment risk than the stock market. Second, the yield volatility of the Korean ETS market was found to be most affected by external shocks and least affected by the volatility information of the market itself. Third, the correlation between the Korean ETS market and the stock market was stronger than that of the WTI crude oil futures market. This paper analyzed the correlation between the Korean ETS market, energy market, and stock market and confirmed that the level of financialization in the Korean ETS market is quite low.

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.

Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning (투자자별 거래정보와 머신러닝을 활용한 투자전략의 성과)

  • Kim, Kyung Mock;Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.65-82
    • /
    • 2021
  • Stock market investors are generally split into foreign investors, institutional investors, and individual investors. Compared to individual investor groups, professional investor groups such as foreign investors have an advantage in information and financial power and, as a result, foreign investors are known to show good investment performance among market participants. The purpose of this study is to propose an investment strategy that combines investor-specific transaction information and machine learning, and to analyze the portfolio investment performance of the proposed model using actual stock price and investor-specific transaction data. The Korea Exchange offers daily information on the volume of purchase and sale of each investor to securities firms. We developed a data collection program in C# programming language using an API provided by Daishin Securities Cybosplus, and collected 151 out of 200 KOSPI stocks with daily opening price, closing price and investor-specific net purchase data from January 2, 2007 to July 31, 2017. The self-organizing map model is an artificial neural network that performs clustering by unsupervised learning and has been introduced by Teuvo Kohonen since 1984. We implement competition among intra-surface artificial neurons, and all connections are non-recursive artificial neural networks that go from bottom to top. It can also be expanded to multiple layers, although many fault layers are commonly used. Linear functions are used by active functions of artificial nerve cells, and learning rules use Instar rules as well as general competitive learning. The core of the backpropagation model is the model that performs classification by supervised learning as an artificial neural network. We grouped and transformed investor-specific transaction volume data to learn backpropagation models through the self-organizing map model of artificial neural networks. As a result of the estimation of verification data through training, the portfolios were rebalanced monthly. For performance analysis, a passive portfolio was designated and the KOSPI 200 and KOSPI index returns for proxies on market returns were also obtained. Performance analysis was conducted using the equally-weighted portfolio return, compound interest rate, annual return, Maximum Draw Down, standard deviation, and Sharpe Ratio. Buy and hold returns of the top 10 market capitalization stocks are designated as a benchmark. Buy and hold strategy is the best strategy under the efficient market hypothesis. The prediction rate of learning data using backpropagation model was significantly high at 96.61%, while the prediction rate of verification data was also relatively high in the results of the 57.1% verification data. The performance evaluation of self-organizing map grouping can be determined as a result of a backpropagation model. This is because if the grouping results of the self-organizing map model had been poor, the learning results of the backpropagation model would have been poor. In this way, the performance assessment of machine learning is judged to be better learned than previous studies. Our portfolio doubled the return on the benchmark and performed better than the market returns on the KOSPI and KOSPI 200 indexes. In contrast to the benchmark, the MDD and standard deviation for portfolio risk indicators also showed better results. The Sharpe Ratio performed higher than benchmarks and stock market indexes. Through this, we presented the direction of portfolio composition program using machine learning and investor-specific transaction information and showed that it can be used to develop programs for real stock investment. The return is the result of monthly portfolio composition and asset rebalancing to the same proportion. Better outcomes are predicted when forming a monthly portfolio if the system is enforced by rebalancing the suggested stocks continuously without selling and re-buying it. Therefore, real transactions appear to be relevant.

Performance Analysis of Trading Strategy using Gradient Boosting Machine Learning and Genetic Algorithm

  • Jang, Phil-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.147-155
    • /
    • 2022
  • In this study, we developed a system to dynamically balance a daily stock portfolio and performed trading simulations using gradient boosting and genetic algorithms. We collected various stock market data from stocks listed on the KOSPI and KOSDAQ markets, including investor-specific transaction data. Subsequently, we indexed the data as a preprocessing step, and used feature engineering to modify and generate variables for training. First, we experimentally compared the performance of three popular gradient boosting algorithms in terms of accuracy, precision, recall, and F1-score, including XGBoost, LightGBM, and CatBoost. Based on the results, in a second experiment, we used a LightGBM model trained on the collected data along with genetic algorithms to predict and select stocks with a high daily probability of profit. We also conducted simulations of trading during the period of the testing data to analyze the performance of the proposed approach compared with the KOSPI and KOSDAQ indices in terms of the CAGR (Compound Annual Growth Rate), MDD (Maximum Draw Down), Sharpe ratio, and volatility. The results showed that the proposed strategies outperformed those employed by the Korean stock market in terms of all performance metrics. Moreover, our proposed LightGBM model with a genetic algorithm exhibited competitive performance in predicting stock price movements.

Financial Development in Vietnam: An Overview

  • BUI, Toan Ngoc
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.169-178
    • /
    • 2020
  • In this paper, we provide an overview of financial development in Vietnam. Particularly, a new approach of this study is to measure financial development through improvements in depth, efficiency and access of the banking system and stock market. Further, the study examines the factors significantly affecting financial development in Vietnam. The data are collected in Vietnam, an emerging country with a limited financial development. We employ the Autoregressive Distributed Lag (ARDL) approach, which generates a high reliability and suits data characteristics of emerging countries like Vietnam. We observe that Vietnam's banking system plays a key role in supplying credits to the economy while the nascent stock market at a limited size shows its potential for a considerable growth in the future. We also find the influential determinants of financial development in Vietnam including real estate market (RE), economic growth (EG), consumer price index (CPI), and global financial crisis (GFC). These findings are essential for Vietnamese authorities in providing practical solutions in order to build a sustainable and synchronous financial development. They are also first empirical evidence relating to an overview of financial development in an emerging country, so they are not only valuable to Vietnam but also crucial to other emerging economies.

Determining Appropriate Bioeconomic Models for Stock Assessment of Aquatic Resources (수산자원량 추정을 위한 생물경제 모델의 적합성평가)

  • 표희동
    • The Journal of Fisheries Business Administration
    • /
    • v.33 no.2
    • /
    • pp.75-98
    • /
    • 2002
  • As a contribution to developing fishery stock assessment, optimum sustainable yield and its international standards such as MSY, MEY, and dynamic MEY for six recommended fisheries are developed using bio-economic models. For selecting the appropriate model, five models - Schaefer, Schnute, Walters and Hilborn, Fox, and CY&P models are tested in effort and catch data of six species. Surprisingly all the models except the CY&P model failed to satisfy statistical standards such as goodness-of-fitness and reliability. Generally, the CY&P model holds good fitness and statistically significant level for all of six fisheries. However, the CY&P model for squid, where the intrinsic growth rate is high, could not explain MSY, MEY, and dynamic MEY appropriately. This study makes a contribution to develop the modified model for the intrinsic growth rate of 1. The reformulated model represents the results reasonably even though the estimated equation has not good fitness. Although most of the CY&P models appear to have good fits and validated results for some cases, these models also seem to be quite sensitive to parameters which means a more stable model should be developed and data should carefully be handled. In particular biological and technical interactions such as multispecies, predator prey relationship, age structure and mortality should be taken into account. In addition, economic factors and fishing efforts such as price, cost, technical change and a reasonable function of fishing input should simultaneously be considered.

  • PDF

Relationship Between Corporate Social Responsibility Expenditures and Performance in Jordanian Commercial Banks

  • BANI-KHALED, Sakhr M.;EL-DALABEEH, Abdel Rahman K.;AL-OLIMAT, Nofan H.;AL SHBAIL, Mohannad O.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.539-549
    • /
    • 2021
  • This study aims to examine the relationship between corporate social responsibility (CSR) expenditures and both financial and non-financial performance of Jordanian commercial banks during the period 2008-2018. To measure the variables of interest, secondary data published on Amman Stock Exchange (ASE) website were processed to become preliminary data suitable for the nature of the study. The study sample amounted to 13 commercial banks, which represent all Jordanian commercial banks listed on ASE.. The study found that there is a positive, statistically significant relationship between CSR expenditures and financial performance, as the study showed that the return on equity (ROE) has a positive and significant relationship with CSR expenditure, while the return on assets (ROA) and Tobin's Q model have a statistically significant negative relationship with CSR expenditure, while the market stock price (MSP) had a positive, but not statistically significant. The study also found that there is a positive, statistically significant relationship between CSR expenditures and non-financial performance, which was represented by total deposits and total training expenditures in Jordanian commercial banks. Accordingly, the study recommends encouraging banks to prepare sustainability reports and CSR reports, which are considered comprehensive, and not only with disclosures within the annual reports.

Estimating the Determinants for Rate of Arrearage in Domestic Bank: A Panel Data Model Approach (패널 데이터모형을 적용한 국내일반은행 연체율 결정요인 추정에 관한 연구)

  • Kim, Hee-Cheu;Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.272-277
    • /
    • 2010
  • In respect complication of group, rate of arrearage in domestic bank is composed of various factors. This paper studies focus on estimating the determinants of the rate of arrearage in domestic bank using panel data model. The volume of analysis consist of 3 groups(loaned patterns of enterprise, housekeeping, credit card). Analyzing period be formed over a 54 point(2005. 1~ 2009. 06). In this paper dependent variable setting up rate of arrearage in domestic bank, explanatory(independent) variables composed of the consumer price index, composite stock price index, rate of exchange, the coincident composite index, national housing bonds and employment rate. The result of estimating the rate of arrearage in domestic bank provides empirical evidences of significance positive relationships between the consumer price index However this study provides empirical evidences of significance negative relationships between the coincident composite index and the composite stock price index. The explanatory variables, that is, rate of exchange, national housing bonds and the employment rate are non-significance variables of negative factor. Implication of these findings are discussed for content research and practices.

Market Efficiency in Real-time : Evidence from the Korea Stock Exchange (한국유가증권시장의 실시간 정보 효율성 검증)

  • Lee, Woo-Baik;Choi, Woo-Suk
    • The Korean Journal of Financial Management
    • /
    • v.26 no.3
    • /
    • pp.103-138
    • /
    • 2009
  • In this article we examine a unique data set of intraday fair disclosure(FD) releases to shed light on market efficiency within the trading day. Specifically, this paper analyze the response of stock prices on fair disclosure disseminated in real-time through KIND(Korea Investor's Network for Disclosure) on Korea stock exchange during the period from January 2003 to September 2004. We find that the prices of stock experiences a statistically and economically significant increase beginning seconds after the fair disclosure is initially announced and lasting approximately two minutes. The stock price responds more strongly to fair disclosure on smaller firm but the response to fair disclosure on the largest firm stock is more gradual, lasting five minutes. We also examine the profitability of a short-term trading strategy based on dissemination of fair disclosure. After controlling for trading costs we find that trader who execute a trade following initial disclosure generate negative profits, but trader buying stock before initial disclosure realize statistically significant positive profit after two minute of disclosure. Summarizing overall results, our evidence supports that security prices on Korea stock exchange reflects all available information within two minutes and the Korea stock market is semi-strongly efficient enough that a trader cannot generate profits based on widely disseminated news unless he acts almost immediately.

  • PDF

A Comparative Study on Improvements of Non - listed Stock Valuation System of Advanced Countries (비상장주식가치평가의 국가별 비교연구)

  • Choi, Dong-choon
    • Journal of Venture Innovation
    • /
    • v.2 no.2
    • /
    • pp.127-140
    • /
    • 2019
  • A stock valuation on the tax law is based on the valuation by market price. But, unlike the listed stocks, the unlisted stocks mostly have the unclear market price. Accordingly, it is necessary to calculate the fair value which corresponds to the market price. The purpose of this paper is to examine the appropriateness of the complementary valuation method in the Inheritance Tax and Gift Tax Act and to provide suggestions for improvement. This study is intended to provide the problems and solutions relating to the valuation of unlisted stocks through analysis of foreign legal systems and actual disputes. When the actual profit/loss data are used to calculate the net profit/loss value on the present regulations, it has the different weight on the latest 3 years' net profits and losses uniformly. Therefore, to extend the range of unlisted stocks valuation and to show the independent and high professionalism of appraisal council not the subsidy appraisal agency of the National Tax Service, it is necessary to change the current rule that the commissioner of the National Tax Service unilaterally appoints the private members into the method of public offering.