• Title/Summary/Keyword: Stock Market Index

Search Result 332, Processing Time 0.031 seconds

Profitability of Intra-day Short Volatility Strategy Using Volatility Risk Premium (변동성위험프리미엄을 이용한 일중변동성매도전략의 수익성에 관한 연구)

  • Kim, Sun-Woong;Choi, Heung-Sik;Bae, Min-Geun
    • Korean Management Science Review
    • /
    • v.27 no.3
    • /
    • pp.33-41
    • /
    • 2010
  • A lot of researches find negative volatility risk premium in options market. We can make a trading profit by exploiting the negative volatility premium. This study proposes negative volatility risk premium hypotheses in the KOSPI 200 stock price index options market and empirically test the proposed hypotheses with intra-day short straddle strategy. This strategy sells both at-the-money call option and at-the-money put option at market open and exits the position at market close. Using MySQL 5.1, we create our database with 1 minute option price data of the KOSPI 200 index options from 2004 to 2009. Empirical results show that negative volatility risk premium exists in the KOSPI 200 stock price index options market. Furthermore, intra-day short straddle strategy consistently produces annual profits except one year.

A Study on USA, Japan and India Stock Market Integration - Focused on Transmission Mechanism - (미국, 일본, 인도 증권시장 통합에 관한 연구 - 정보전달 메카니즘을 중심으로 -)

  • Yi, Dong-Wook
    • International Area Studies Review
    • /
    • v.13 no.2
    • /
    • pp.255-276
    • /
    • 2009
  • This article has examined the international transmission of returns among S&P500, Nikkei225 and SENSEX stock index cash markets using the daily closing prices covered from January 4, 2002 to February 6, 2009. For this purpose we employed dynamic time series models such as the Granger causality analysis and variance decomposition analysis based on VAR model. The main empirical results are as follows; First, according to Granger causality tests we find that S&P500 stock index has a significant prediction power on the changes of SENSEX and Nikkei225 stock index market and vice versa. However, US stock market's influence is dominant to the other stock markets at a significant level statistically. Second, according to variance decomposition, SENSEX stock index is more sensitive to the movement of S&P500 than that of Nikkei225 stock index. These kinds of empirical results shows that the three stock markets are integrated over times and these results will be informative for the international investors to build the world-wide investment portfolio and risk management strategies, etc.

Modeling Stock Price Volatility: Empirical Evidence from the Ho Chi Minh City Stock Exchange in Vietnam

  • NGUYEN, Cuong Thanh;NGUYEN, Manh Huu
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.3
    • /
    • pp.19-26
    • /
    • 2019
  • The paper aims to measure stock price volatility on Ho Chi Minh stock exchange (HSX). We apply symmetric models (GARCH, GARCH-M) and asymmetry (EGARCH and TGARCH) to measure stock price volatility on HSX. We used time series data including the daily closed price of VN-Index during 1/03/2001-1/03/2019 with 4375 observations. The results show that GARCH (1,1) and EGARCH (1,1) models are the most suitable models to measure both symmetry and asymmetry volatility level of VN-Index. The study also provides evidence for the existence of asymmetric effects (leverage) through the parameters of TGARCH model (1,1), showing that positive shocks have a significant effect on the conditional variance (volatility). This result implies that the volatility of stock returns has a big impact on future market movements under the impact of shocks, while asymmetric volatility increase market risk, thus increase the attractiveness of the stock market. The research results are useful reference information to help investors in forecasting the expected profit rate of the HSX, and also the risks along with market fluctuations in order to take appropriate adjust to the portfolios. From this study's results, we can see risk prediction models such as GARCH can be better used in risk forecasting especially.

The Price Dynamics in Futures and Option Markets - based on KOSPI200 stock index market - (주가지수선물가격과 옵션가격의 동적관련성에 관한 연구 - KOSPI 200 주가지수현물시장을 중심으로 -)

  • Seo, Sang-Gu
    • Management & Information Systems Review
    • /
    • v.36 no.3
    • /
    • pp.37-49
    • /
    • 2017
  • This study investigates the dynamic relationship between KOSPI200 stock index and stock index futures and stock index option markets which is its derived from KOSPI200 stock index. We use 5-minutes rate of return data from 2012. 06 to 2014. 12. To empirical analysis, this study use autocorrelation and cross-correlation analysis as a preliminary analysis and then following Stoll and Whaley(1990) and Chan(1992), the multiple regression is estimated to examine the lead-lag patterns between the stock index and stock index futures and option markets by Newey and West's(1987) Empirical results of our study shows as follows. First, there exist a strong autocorrelation in the KOSPI200 stock index before 10minutes but a very weak autocorrelation in the stock index futures and option markets. Second, there is a strong evidence that stock index future and option markets lead KOSPI200 stock index in the cross-correlation analysis. Third, based on the multiple regression, the stock index futures and option markets lead the stock index prior to 10-15 minutes and weak evidence that the stock index leads the future and option markets. This results show that the market efficient of KOSPI200 stock index market is improved as compared to the early stage of stock index future and option market.

  • PDF

Empirical Analysis on the Spillover Effects between Korean and U.S. Stock Market after U.S. Financial Crisis (서브프라임사태 전후 한미간 정보전이현상에 관한 연구)

  • Yae, Min Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.4
    • /
    • pp.113-125
    • /
    • 2008
  • This paper investigates the spillover effects(co-movements) between korean and U.S stock market by KOSPI and DJIA Index. Especially it compare to the pre- and post period of U.S. financial crisis resulted from sub-prime mortgage loan. The main results are as follows. First, the spillover effects of DJIA(U.S. market) to KOSPI(Korean market) are strong. This result accord with the former researches on this subject. Second, spillover effects are more strong after U.S. financial crisis. A possible reason for this phenomenon is a trend which the major investors such as foreign and institutional investors in domestic stock market have more attention to U.S. stock market. Third, the spillover effects appear in the opposite direction, that is KOSPI(Korean Stock Market) to DJIA(U.S. Stock Market). It seems to be the results of asian stock market's growing infIuences to European and U.S Markets.

A GARCH-MIDAS approach to modelling stock returns

  • Ezekiel NN Nortey;Ruben Agbeli;Godwin Debrah;Theophilus Ansah-Narh;Edmund Fosu Agyemang
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.5
    • /
    • pp.535-556
    • /
    • 2024
  • Measuring stock market volatility and its determinants is critical for stock market participants, as volatility spillover effects affect corporate performance. This study adopted a novel approach to analysing and implementing GARCH-MIDAS modelling methods. The classical GARCH as a benchmark and the univariate GARCH-MIDAS framework are the GARCH family models whose forecasting outcomes are examined. The outcome of GARCH-MIDAS analyses suggests that inflation, interest rate, exchange rate, and oil price are significant determinants of the volatility of the Johannesburg Stock Market All Share Index. While for Nigeria, the volatility reacts significantly to the exchange rate and oil price. Furthermore, inflation, exchange rate, interest rate, and oil price significantly influence Ghanaian equity volatility, especially for the long-term volatility component. The significant shock of the oil price and exchange rate to volatility is present in all three markets using the generalized autoregressive conditional heteroscedastic-mixed data sampling (GARCH-MIDAS) framework. The GARCH-MIDAS, with a powerful fusion of the GARCH model's volatility-capturing capabilities and the MIDAS approach's ability to handle mixed-frequency data, predicts the volatility for all variables better than the traditional GARCH framework. Incorporating these two techniques provides an innovative and comprehensive approach to modelling stock returns, making it an extremely useful tool for researchers, financial analysts, and investors.

Capturing the Short-run and Long-run Causal Behavior of Philippine Stock Market Volatility under Vector Error Correction Environment

  • CAMBA, Abraham C. Jr.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.8
    • /
    • pp.41-49
    • /
    • 2020
  • This study investigates the short-run and long-run causal behavior of the Philippine stock market index volatility under vector error correction environment. The variables were tested first for stationarity and then long-run equilibrium relationship. Moreover, an impulse response function was estimated to examine the extent of innovations in the independent variables in explaining the Philippine stock market index volatility. The results reveal that the volatility of the Philippine stock market index exhibit long-run equilibrium relationship with Peso-Dollar exchange rate, London Interbank Offered Rate, and crude oil prices. The short-run dynamics-based VECM estimates indicate that in the short-run, increases (i.e., depreciation) in Peso-Dollar exchange rate cause PSEI volatility to increase. As for the London Interbank Offered Rate, it causes increases in PSEI volatility in the short-run. The adjustment coefficients used with the long-run dynamics validates the presence of unidirectional causal long-run relationship from Peso-Dollar exchange rate, London Interbank Offered Rate, and crude oil prices to PSEI volatility, and bidirectional causal long-run relationship between PSEI volatility and London Interbank Offered Rate. The impulse response functions developed within the VECM framework demonstrate the positive and negative reactions of PSEI volatility to unanticipated Peso-Dollar exchange rate, London Interbank Offered Rate, and crude oil price shocks.

Impact of Economic Policy Uncertainty and Macroeconomic Factors on Stock Market Volatility: Evidence from Islamic Indices

  • AZIZ, Tariq;MARWAT, Jahanzeb;MUSTAFA, Sheraz;KUMAR, Vikesh
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.683-692
    • /
    • 2020
  • The primary purpose of the study is to investigate the volatility spillovers from global economic policy uncertainty and macroeconomic factors to the Islamic stock market returns. The study focuses on the Islamic stock indices of emerging economies including Indonesia, Malaysia, and Turkey. The Macroeconomic factors are industrial production, consumer price index, exchange rate. EGARCH model is employed for investigation of volatility spillovers. The results show that the global economic policy uncertainty has a significant spillover effect only on the returns of Turkish Islamic stock index. Similarly, the shocks in macroeconomic factors have little influence on the volatility of Islamic indices returns. The volatility of Indonesian and the Turkish Islamic stock indices returns is not influenced from the fluctuations in macroeconomic factors. However, there is significant volatility spillover only from industrial production to the returns of Malaysian Islamic index. The results suggest that the Islamic stock markets are less likely to influence from the global economic policies and macroeconomic factors. The stability of Islamic stocks provide opportunity for diversification of portfolios, particularly in stressed market conditions. The major price factors of Islamic markets could be firms' specific factors or investors' behaviors. The findings are helpful for policy makers and investors in formulating policies and portfolios.

Stock-Index Invest Model Using News Big Data Opinion Mining (뉴스와 주가 : 빅데이터 감성분석을 통한 지능형 투자의사결정모형)

  • Kim, Yoo-Sin;Kim, Nam-Gyu;Jeong, Seung-Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.143-156
    • /
    • 2012
  • People easily believe that news and stock index are closely related. They think that securing news before anyone else can help them forecast the stock prices and enjoy great profit, or perhaps capture the investment opportunity. However, it is no easy feat to determine to what extent the two are related, come up with the investment decision based on news, or find out such investment information is valid. If the significance of news and its impact on the stock market are analyzed, it will be possible to extract the information that can assist the investment decisions. The reality however is that the world is inundated with a massive wave of news in real time. And news is not patterned text. This study suggests the stock-index invest model based on "News Big Data" opinion mining that systematically collects, categorizes and analyzes the news and creates investment information. To verify the validity of the model, the relationship between the result of news opinion mining and stock-index was empirically analyzed by using statistics. Steps in the mining that converts news into information for investment decision making, are as follows. First, it is indexing information of news after getting a supply of news from news provider that collects news on real-time basis. Not only contents of news but also various information such as media, time, and news type and so on are collected and classified, and then are reworked as variable from which investment decision making can be inferred. Next step is to derive word that can judge polarity by separating text of news contents into morpheme, and to tag positive/negative polarity of each word by comparing this with sentimental dictionary. Third, positive/negative polarity of news is judged by using indexed classification information and scoring rule, and then final investment decision making information is derived according to daily scoring criteria. For this study, KOSPI index and its fluctuation range has been collected for 63 days that stock market was open during 3 months from July 2011 to September in Korea Exchange, and news data was collected by parsing 766 articles of economic news media M company on web page among article carried on stock information>news>main news of portal site Naver.com. In change of the price index of stocks during 3 months, it rose on 33 days and fell on 30 days, and news contents included 197 news articles before opening of stock market, 385 news articles during the session, 184 news articles after closing of market. Results of mining of collected news contents and of comparison with stock price showed that positive/negative opinion of news contents had significant relation with stock price, and change of the price index of stocks could be better explained in case of applying news opinion by deriving in positive/negative ratio instead of judging between simplified positive and negative opinion. And in order to check whether news had an effect on fluctuation of stock price, or at least went ahead of fluctuation of stock price, in the results that change of stock price was compared only with news happening before opening of stock market, it was verified to be statistically significant as well. In addition, because news contained various type and information such as social, economic, and overseas news, and corporate earnings, the present condition of type of industry, market outlook, the present condition of market and so on, it was expected that influence on stock market or significance of the relation would be different according to the type of news, and therefore each type of news was compared with fluctuation of stock price, and the results showed that market condition, outlook, and overseas news was the most useful to explain fluctuation of news. On the contrary, news about individual company was not statistically significant, but opinion mining value showed tendency opposite to stock price, and the reason can be thought to be the appearance of promotional and planned news for preventing stock price from falling. Finally, multiple regression analysis and logistic regression analysis was carried out in order to derive function of investment decision making on the basis of relation between positive/negative opinion of news and stock price, and the results showed that regression equation using variable of market conditions, outlook, and overseas news before opening of stock market was statistically significant, and classification accuracy of logistic regression accuracy results was shown to be 70.0% in rise of stock price, 78.8% in fall of stock price, and 74.6% on average. This study first analyzed relation between news and stock price through analyzing and quantifying sensitivity of atypical news contents by using opinion mining among big data analysis techniques, and furthermore, proposed and verified smart investment decision making model that could systematically carry out opinion mining and derive and support investment information. This shows that news can be used as variable to predict the price index of stocks for investment, and it is expected the model can be used as real investment support system if it is implemented as system and verified in the future.

A Dynamic Analysis on the Competition Relationships in Korean Stock Market Using Lotka-Volterra Model (Lotka-Volterra 모형을 이용한 국내 주식시장의 경쟁관계 동태적 분석)

  • Lee, Sung Joon;Lee, Deok-Joo;Oh, Hyungsik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.14-20
    • /
    • 2003
  • The purpose of this paper is an attempt to analyze the dynamic relationship between KSE and KOSDAQ, two competing markets in Korean stock market, in the viewpoint of competition. Lotka-Volterra model, one of well-known competitive diffusion model, is adopted to represent the competitive situations of Korean stock market and it is estimated using daily empirical index data of KSE and KOSDAQ during 1997~2001. The results show that there existed a predator-prey relationship between two markets in which KSE acted as a predator right after the emergence of KOSDAQ. This interaction was altered to a symbiotic relationship and finally to the pure competition relationship. We also perform an equilibrium analysis of the estimated Lotka-Volterra equations and, as a result, it is found that there is a market index equilibrium point that would be stable in the latest relationship.